FFmpeg  2.1.1
hevc_filter.c
Go to the documentation of this file.
1 /*
2  * HEVC video Decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2013 Seppo Tomperi
6  * Copyright (C) 2013 Wassim Hamidouche
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 #include "libavutil/common.h"
26 #include "libavutil/internal.h"
27 
28 #include "cabac_functions.h"
29 #include "golomb.h"
30 #include "hevc.h"
31 #include "bit_depth_template.c"
32 
33 #define LUMA 0
34 #define CB 1
35 #define CR 2
36 
37 static const uint8_t tctable[54] = {
38  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // QP 0...18
39  1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, // QP 19...37
40  5, 5, 6, 6, 7, 8, 9,10,11,13,14,16,18,20,22,24 // QP 38...53
41 };
42 
43 static const uint8_t betatable[52] = {
44  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, // QP 0...18
45  9,10,11,12,13,14,15,16,17,18,20,22,24,26,28,30,32,34,36, // QP 19...37
46  38,40,42,44,46,48,50,52,54,56,58,60,62,64 // QP 38...51
47 };
48 
49 static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)
50 {
51  static const int qp_c[] = { 29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37 };
52  int qp_i, offset;
53  int qp;
54  int idxt;
55 
56  // slice qp offset is not used for deblocking
57  if (c_idx == 1)
58  offset = s->pps->cb_qp_offset;
59  else
60  offset = s->pps->cr_qp_offset;
61 
62  qp_i = av_clip_c(qp_y + offset, 0, 57);
63  if (qp_i < 30)
64  qp = qp_i;
65  else if (qp_i > 43)
66  qp = qp_i - 6;
67  else
68  qp = qp_c[qp_i - 30];
69 
70  idxt = av_clip_c(qp + DEFAULT_INTRA_TC_OFFSET + tc_offset, 0, 53);
71  return tctable[idxt];
72 }
73 
74 static int get_qPy_pred(HEVCContext *s, int xC, int yC, int xBase, int yBase, int log2_cb_size)
75 {
76  HEVCLocalContext *lc = s->HEVClc;
77  int ctb_size_mask = (1 << s->sps->log2_ctb_size) - 1;
78  int MinCuQpDeltaSizeMask = (1 << (s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth)) - 1;
79  int xQgBase = xBase - ( xBase & MinCuQpDeltaSizeMask );
80  int yQgBase = yBase - ( yBase & MinCuQpDeltaSizeMask );
81  int min_cb_width = s->sps->min_cb_width;
82  int min_cb_height = s->sps->min_cb_height;
83  int x_cb = xQgBase >> s->sps->log2_min_cb_size;
84  int y_cb = yQgBase >> s->sps->log2_min_cb_size;
85  int availableA = (xBase & ctb_size_mask) && (xQgBase & ctb_size_mask);
86  int availableB = (yBase & ctb_size_mask) && (yQgBase & ctb_size_mask);
87  int qPy_pred;
88  int qPy_a;
89  int qPy_b;
90 
91  // qPy_pred
92  if (lc->first_qp_group) {
94  qPy_pred = s->sh.slice_qp;
95  } else {
96  qPy_pred = lc->qp_y;
97  if (log2_cb_size < s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) {
98  static const int offsetX[8][8] = {
99  {-1, 1, 3, 1, 7, 1, 3, 1},
100  { 0, 0, 0, 0, 0, 0, 0, 0},
101  { 1, 3, 1, 3, 1, 3, 1, 3},
102  { 2, 2, 2, 2, 2, 2, 2, 2},
103  { 3, 5, 7, 5, 3, 5, 7, 5},
104  { 4, 4, 4, 4, 4, 4, 4, 4},
105  { 5, 7, 5, 7, 5, 7, 5, 7},
106  { 6, 6, 6, 6, 6, 6, 6, 6}
107  };
108  static const int offsetY[8][8] = {
109  { 7, 0, 1, 2, 3, 4, 5, 6},
110  { 0, 1, 2, 3, 4, 5, 6, 7},
111  { 1, 0, 3, 2, 5, 4, 7, 6},
112  { 0, 1, 2, 3, 4, 5, 6, 7},
113  { 3, 0, 1, 2, 7, 4, 5, 6},
114  { 0, 1, 2, 3, 4, 5, 6, 7},
115  { 1, 0, 3, 2, 5, 4, 7, 6},
116  { 0, 1, 2, 3, 4, 5, 6, 7}
117  };
118  int xC0b = (xC - (xC & ctb_size_mask)) >> s->sps->log2_min_cb_size;
119  int yC0b = (yC - (yC & ctb_size_mask)) >> s->sps->log2_min_cb_size;
120  int idxX = (xQgBase & ctb_size_mask) >> s->sps->log2_min_cb_size;
121  int idxY = (yQgBase & ctb_size_mask) >> s->sps->log2_min_cb_size;
122  int idx_mask = ctb_size_mask >> s->sps->log2_min_cb_size;
123  int x, y;
124 
125  x = FFMIN(xC0b + offsetX[idxX][idxY], min_cb_width - 1);
126  y = FFMIN(yC0b + (offsetY[idxX][idxY] & idx_mask), min_cb_height - 1);
127 
128  if (xC0b == (lc->start_of_tiles_x >> s->sps->log2_min_cb_size) &&
129  offsetX[idxX][idxY] == -1) {
130  x = (lc->end_of_tiles_x >> s->sps->log2_min_cb_size) - 1;
131  y = yC0b - 1;
132  }
133  qPy_pred = s->qp_y_tab[y * min_cb_width + x];
134  }
135  }
136 
137  // qPy_a
138  if (availableA == 0)
139  qPy_a = qPy_pred;
140  else
141  qPy_a = s->qp_y_tab[(x_cb - 1) + y_cb * min_cb_width];
142 
143  // qPy_b
144  if (availableB == 0)
145  qPy_b = qPy_pred;
146  else
147  qPy_b = s->qp_y_tab[x_cb + (y_cb - 1) * min_cb_width];
148 
149  return (qPy_a + qPy_b + 1) >> 1;
150 }
151 
152 void ff_hevc_set_qPy(HEVCContext *s, int xC, int yC, int xBase, int yBase, int log2_cb_size)
153 {
154  int qp_y = get_qPy_pred(s, xC, yC, xBase, yBase, log2_cb_size);
155 
156  if (s->HEVClc->tu.cu_qp_delta != 0) {
157  int off = s->sps->qp_bd_offset;
158  s->HEVClc->qp_y = ((qp_y + s->HEVClc->tu.cu_qp_delta + 52 + 2 * off) % (52 + off)) - off;
159  } else
160  s->HEVClc->qp_y = qp_y;
161 }
162 
163 static int get_qPy(HEVCContext *s, int xC, int yC)
164 {
165  int log2_min_cb_size = s->sps->log2_min_cb_size;
166  int x = xC >> log2_min_cb_size;
167  int y = yC >> log2_min_cb_size;
168  return s->qp_y_tab[x + y * s->sps->min_cb_width];
169 }
170 
171 static void copy_CTB(uint8_t *dst, uint8_t *src, int width, int height, int stride)
172 {
173  int i;
174 
175  for(i=0; i< height; i++){
176  memcpy(dst, src, width);
177  dst += stride;
178  src += stride;
179  }
180 }
181 
182 #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
183 
184 static void sao_filter_CTB(HEVCContext *s, int x, int y)
185 {
186  // TODO: This should be easily parallelizable
187  // TODO: skip CBs when (cu_transquant_bypass_flag || (pcm_loop_filter_disable_flag && pcm_flag))
188  int c_idx = 0;
189  int class = 1, class_index;
190  int edges[4]; // 0 left 1 top 2 right 3 bottom
191  SAOParams *sao[4];
192  int classes[4];
193  int x_shift = 0, y_shift = 0;
194  int x_ctb = x>>s->sps->log2_ctb_size;
195  int y_ctb = y>>s->sps->log2_ctb_size;
196  int ctb_addr_rs = y_ctb * s->sps->ctb_width + x_ctb;
197  int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[ctb_addr_rs];
198 
199  // flags indicating unfilterable edges
200  uint8_t vert_edge[] = {0,0,0,0};
201  uint8_t horiz_edge[] = {0,0,0,0};
202  uint8_t diag_edge[] = {0,0,0,0};
203  uint8_t lfase[3]; // current, above, left
205  uint8_t left_tile_edge = 0;
206  uint8_t up_tile_edge = 0;
207 
208  sao[0] = &CTB(s->sao, x_ctb, y_ctb);
209  edges[0] = x_ctb == 0;
210  edges[1] = y_ctb == 0;
211  edges[2] = x_ctb == (s->sps->ctb_width - 1);
212  edges[3] = y_ctb == (s->sps->ctb_height - 1);
213  lfase[0] = CTB(s->filter_slice_edges, x_ctb, y_ctb);
214  classes[0] = 0;
215 
216  if (!edges[0]) {
217  left_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
218  sao[class] = &CTB(s->sao, x_ctb - 1, y_ctb);
219  vert_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb)) || left_tile_edge;
220  vert_edge[2] = vert_edge[0];
221  lfase[2] = CTB(s->filter_slice_edges, x_ctb - 1, y_ctb);
222  classes[class] = 2;
223  class++;
224  x_shift = 8;
225  }
226 
227  if (!edges[1]) {
228  up_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]];
229  sao[class] = &CTB(s->sao, x_ctb, y_ctb - 1);
230  horiz_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) || up_tile_edge;
231  horiz_edge[1] = horiz_edge[0];
232  lfase[1] = CTB(s->filter_slice_edges, x_ctb, y_ctb - 1);
233  classes[class] = 1;
234  class++;
235  y_shift = 4;
236 
237  if (!edges[0]) {
238  classes[class] = 3;
239  sao[class] = &CTB(s->sao, x_ctb - 1, y_ctb - 1);
240  class++;
241 
242  // Tile check here is done current CTB row/col, not above/left like you'd expect,
243  //but that is because the tile boundary always extends through the whole pic
244  vert_edge[1] = (!lfase[1] && CTB(s->tab_slice_address, x_ctb, y_ctb - 1) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge;
245  vert_edge[3] = vert_edge[1];
246  horiz_edge[2] = (!lfase[2] && CTB(s->tab_slice_address, x_ctb - 1, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || up_tile_edge;
247  horiz_edge[3] = horiz_edge[2];
248  diag_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge || up_tile_edge;
249  diag_edge[3] = diag_edge[0];
250 
251  // Does left CTB comes after above CTB?
252  if(CTB(s->tab_slice_address, x_ctb - 1, y_ctb) > CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) {
253  diag_edge[2] = !lfase[2] || left_tile_edge || up_tile_edge;
254  diag_edge[1] = diag_edge[2];
255  } else if(CTB(s->tab_slice_address, x_ctb - 1, y_ctb) < CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) {
256  diag_edge[1] = !lfase[1] || left_tile_edge || up_tile_edge;
257  diag_edge[2] = diag_edge[1];
258  } else {
259  // Same slice, only consider tiles
260  diag_edge[2] = left_tile_edge || up_tile_edge;
261  diag_edge[1] = diag_edge[2];
262  }
263  }
264  }
265 
266  for (c_idx = 0; c_idx < 3; c_idx++) {
267  int chroma = c_idx ? 1 : 0;
268  int x0 = x >> chroma;
269  int y0 = y >> chroma;
270  int stride = s->frame->linesize[c_idx];
271  int ctb_size = (1 << (s->sps->log2_ctb_size)) >> s->sps->hshift[c_idx];
272  int width = FFMIN(ctb_size,
273  (s->sps->width >> s->sps->hshift[c_idx]) - x0);
274  int height = FFMIN(ctb_size,
275  (s->sps->height >> s->sps->vshift[c_idx]) - y0);
276 
277  uint8_t *src = &s->frame->data[c_idx][y0 * stride + (x0 << s->sps->pixel_shift)];
278  uint8_t *dst = &s->sao_frame->data[c_idx][y0 * stride + (x0 << s->sps->pixel_shift)];
279  int offset = (y_shift >> chroma) * stride + ((x_shift >> chroma) << s->sps->pixel_shift);
280 
281  copy_CTB(dst - offset, src - offset,
282  (edges[2] ? width + (x_shift >> chroma) : width) << s->sps->pixel_shift,
283  (edges[3] ? height + (y_shift >> chroma) : height), stride);
284 
285  for (class_index = 0; class_index < class; class_index++) {
286 
287  switch (sao[class_index]->type_idx[c_idx]) {
288  case SAO_BAND:
289  s->hevcdsp.sao_band_filter[classes[class_index]](dst, src, stride, sao[class_index], edges, width, height, c_idx);
290  break;
291  case SAO_EDGE:
292  s->hevcdsp.sao_edge_filter[classes[class_index]](dst, src, stride, sao[class_index], edges, width, height, c_idx, vert_edge[classes[class_index]], horiz_edge[classes[class_index]], diag_edge[classes[class_index]]);
293  break;
294  }
295  }
296  }
297 }
298 
299 static int get_pcm(HEVCContext *s, int x, int y)
300 {
301  int log2_min_pu_size = s->sps->log2_min_pu_size;
302  int x_pu = x >> log2_min_pu_size;
303  int y_pu = y >> log2_min_pu_size;
304 
305  if (x < 0 || x_pu >= s->sps->min_pu_width ||
306  y < 0 || y_pu >= s->sps->min_pu_height)
307  return 2;
308  return s->is_pcm[y_pu * s->sps->min_pu_width + x_pu];
309 }
310 
311 #define TC_CALC(qp, bs) tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) + ((tc_offset >> 1) << 1), 0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)]
312 
313 static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0)
314 {
315  uint8_t *src;
316  int x, y;
317  int chroma;
318  int c_tc[2];
319  int beta[2];
320  int tc[2];
321  uint8_t no_p[2] = {0};
322  uint8_t no_q[2] = {0};
323 
324  int log2_ctb_size = s->sps->log2_ctb_size;
325  int x_end, y_end;
326  int ctb_size = 1<<log2_ctb_size;
327  int ctb = (x0 >> log2_ctb_size) + (y0 >> log2_ctb_size) * s->sps->ctb_width;
328  int cur_tc_offset = s->deblock[ctb].tc_offset;
329  int cur_beta_offset = s->deblock[ctb].beta_offset;
330  int left_tc_offset, left_beta_offset;
331  int tc_offset, beta_offset;
332  int pcmf = (s->sps->pcm_enabled_flag && s->sps->pcm.loop_filter_disable_flag) ||
334 
335  if (x0) {
336  left_tc_offset = s->deblock[ctb-1].tc_offset;
337  left_beta_offset = s->deblock[ctb-1].beta_offset;
338  }
339 
340  x_end = x0+ctb_size;
341  if (x_end > s->sps->width)
342  x_end = s->sps->width;
343  y_end = y0+ctb_size;
344  if (y_end > s->sps->height)
345  y_end = s->sps->height;
346 
347  tc_offset = cur_tc_offset;
348  beta_offset = cur_beta_offset;
349 
350  // vertical filtering luma
351  for (y = y0; y < y_end; y += 8) {
352  for (x = x0 ? x0 : 8; x < x_end; x += 8) {
353  const int bs0 = s->vertical_bs[(x >> 3) + (y >> 2) * s->bs_width];
354  const int bs1 = s->vertical_bs[(x >> 3) + ((y + 4) >> 2) * s->bs_width];
355  if (bs0 || bs1) {
356  const int qp0 = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
357  const int qp1 = (get_qPy(s, x - 1, y + 4) + get_qPy(s, x, y + 4) + 1) >> 1;
358 
359  beta[0] = betatable[av_clip(qp0 + ((beta_offset >> 1) << 1), 0, MAX_QP)];
360  beta[1] = betatable[av_clip(qp1 + ((beta_offset >> 1) << 1), 0, MAX_QP)];
361  tc[0] = bs0 ? TC_CALC(qp0, bs0) : 0;
362  tc[1] = bs1 ? TC_CALC(qp1, bs1) : 0;
363  src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)];
364  if (pcmf) {
365  no_p[0] = get_pcm(s, x - 1, y);
366  no_p[1] = get_pcm(s, x - 1, y + 4);
367  no_q[0] = get_pcm(s, x, y);
368  no_q[1] = get_pcm(s, x, y + 4);
369  s->hevcdsp.hevc_v_loop_filter_luma_c(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q);
370  } else
371  s->hevcdsp.hevc_v_loop_filter_luma(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q);
372  }
373  }
374  }
375 
376  // vertical filtering chroma
377  for (chroma = 1; chroma <= 2; chroma++) {
378  for (y = y0; y < y_end; y += 16) {
379  for (x = x0 ? x0:16; x < x_end; x += 16) {
380  const int bs0 = s->vertical_bs[(x >> 3) + (y >> 2) * s->bs_width];
381  const int bs1 = s->vertical_bs[(x >> 3) + ((y + 8) >> 2) * s->bs_width];
382  if ((bs0 == 2) || (bs1 == 2)) {
383  const int qp0 = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
384  const int qp1 = (get_qPy(s, x - 1, y + 8) + get_qPy(s, x, y + 8) + 1) >> 1;
385 
386  c_tc[0] = (bs0 == 2) ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
387  c_tc[1] = (bs1 == 2) ? chroma_tc(s, qp1, chroma, tc_offset) : 0;
388  src = &s->frame->data[chroma][(y / 2) * s->frame->linesize[chroma] + ((x / 2) << s->sps->pixel_shift)];
389  if (pcmf) {
390  no_p[0] = get_pcm(s, x - 1, y);
391  no_p[1] = get_pcm(s, x - 1, y + 8);
392  no_q[0] = get_pcm(s, x, y);
393  no_q[1] = get_pcm(s, x, y + 8);
394  s->hevcdsp.hevc_v_loop_filter_chroma_c(src, s->frame->linesize[chroma], c_tc, no_p, no_q);
395  } else
396  s->hevcdsp.hevc_v_loop_filter_chroma(src, s->frame->linesize[chroma], c_tc, no_p, no_q);
397  }
398  }
399  }
400  }
401 
402  // horizontal filtering luma
403  if (x_end != s->sps->width)
404  x_end -= 8;
405  for (y = y0 ? y0 : 8; y < y_end; y += 8) {
406  for (x = x0 ? x0 - 8 : 0; x < x_end; x += 8) {
407  const int bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2];
408  const int bs1 = s->horizontal_bs[(x + 4 + y * s->bs_width) >> 2];
409  if (bs0 || bs1) {
410  const int qp0 = (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1;
411  const int qp1 = (get_qPy(s, x + 4, y - 1) + get_qPy(s, x + 4, y) + 1) >> 1;
412 
413  tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
414  beta_offset = x >= x0 ? cur_beta_offset : left_beta_offset;
415 
416  beta[0] = betatable[av_clip(qp0 + ((beta_offset >> 1) << 1), 0, MAX_QP)];
417  beta[1] = betatable[av_clip(qp1 + ((beta_offset >> 1) << 1), 0, MAX_QP)];
418  tc[0] = bs0 ? TC_CALC(qp0, bs0) : 0;
419  tc[1] = bs1 ? TC_CALC(qp1, bs1) : 0;
420  src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)];
421  if (pcmf) {
422  no_p[0] = get_pcm(s, x, y - 1);
423  no_p[1] = get_pcm(s, x + 4, y - 1);
424  no_q[0] = get_pcm(s, x, y);
425  no_q[1] = get_pcm(s, x + 4, y);
426  s->hevcdsp.hevc_h_loop_filter_luma_c(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q);
427  } else
428  s->hevcdsp.hevc_h_loop_filter_luma(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q);
429  }
430  }
431  }
432 
433  // horizontal filtering chroma
434  for (chroma = 1; chroma <= 2; chroma++) {
435  for (y = y0 ? y0 : 16; y < y_end; y += 16) {
436  for (x = x0 - 8; x < x_end; x += 16) {
437  int bs0, bs1;
438  // to make sure no memory access over boundary when x = -8
439  // TODO: simplify with row based deblocking
440  if (x < 0) {
441  bs0 = 0;
442  bs1 = s->horizontal_bs[(x + 8 + y * s->bs_width) >> 2];
443  } else if (x >= x_end - 8) {
444  bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2];
445  bs1 = 0;
446  } else {
447  bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2];
448  bs1 = s->horizontal_bs[(x + 8 + y * s->bs_width) >> 2];
449  }
450 
451  if ((bs0 == 2) || (bs1 == 2)) {
452  const int qp0 = (bs0 == 2) ? ((get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1) : 0;
453  const int qp1 = (bs1 == 2) ? ((get_qPy(s, x + 8, y - 1) + get_qPy(s, x + 8, y) + 1) >> 1) : 0;
454 
455  tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
456  c_tc[0] = (bs0 == 2) ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
457  c_tc[1] = (bs1 == 2) ? chroma_tc(s, qp1, chroma, cur_tc_offset) : 0;
458  src = &s->frame->data[chroma][(y / 2) * s->frame->linesize[chroma] + ((x / 2) << s->sps->pixel_shift)];
459  if (pcmf) {
460  no_p[0] = get_pcm(s, x, y - 1);
461  no_p[1] = get_pcm(s, x + 8, y - 1);
462  no_q[0] = get_pcm(s, x, y);
463  no_q[1] = get_pcm(s, x + 8, y);
464  s->hevcdsp.hevc_h_loop_filter_chroma_c(src, s->frame->linesize[chroma], c_tc, no_p, no_q);
465  } else
466  s->hevcdsp.hevc_h_loop_filter_chroma(src, s->frame->linesize[chroma], c_tc, no_p, no_q);
467  }
468  }
469  }
470  }
471 }
472 
474  uint8_t curr_cbf_luma, MvField *neigh,
475  uint8_t neigh_cbf_luma, RefPicList *neigh_refPicList,
476  int tu_border)
477 {
478  int mvs = curr->pred_flag[0] + curr->pred_flag[1];
479 
480  if (tu_border) {
481  if (curr->is_intra || neigh->is_intra)
482  return 2;
483  if (curr_cbf_luma || neigh_cbf_luma)
484  return 1;
485  }
486 
487  if (mvs == neigh->pred_flag[0] + neigh->pred_flag[1]) {
488  if (mvs == 2) {
489  // same L0 and L1
490  if (s->ref->refPicList[0].list[curr->ref_idx[0]] == neigh_refPicList[0].list[neigh->ref_idx[0]] &&
491  s->ref->refPicList[0].list[curr->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]] &&
492  neigh_refPicList[0].list[neigh->ref_idx[0]] == neigh_refPicList[1].list[neigh->ref_idx[1]]) {
493  if ((abs(neigh->mv[0].x - curr->mv[0].x) >= 4 || abs(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
494  abs(neigh->mv[1].x - curr->mv[1].x) >= 4 || abs(neigh->mv[1].y - curr->mv[1].y) >= 4) &&
495  (abs(neigh->mv[1].x - curr->mv[0].x) >= 4 || abs(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
496  abs(neigh->mv[0].x - curr->mv[1].x) >= 4 || abs(neigh->mv[0].y - curr->mv[1].y) >= 4))
497  return 1;
498  else
499  return 0;
500  } else if (neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
501  neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
502  if (abs(neigh->mv[0].x - curr->mv[0].x) >= 4 || abs(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
503  abs(neigh->mv[1].x - curr->mv[1].x) >= 4 || abs(neigh->mv[1].y - curr->mv[1].y) >= 4)
504  return 1;
505  else
506  return 0;
507  } else if (neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
508  neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
509  if (abs(neigh->mv[1].x - curr->mv[0].x) >= 4 || abs(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
510  abs(neigh->mv[0].x - curr->mv[1].x) >= 4 || abs(neigh->mv[0].y - curr->mv[1].y) >= 4)
511  return 1;
512  else
513  return 0;
514  } else {
515  return 1;
516  }
517  } else { // 1 MV
518  Mv A, B;
519  int ref_A;
520  int ref_B;
521 
522  if (curr->pred_flag[0]) {
523  A = curr->mv[0];
524  ref_A = s->ref->refPicList[0].list[curr->ref_idx[0]];
525  } else {
526  A = curr->mv[1];
527  ref_A = s->ref->refPicList[1].list[curr->ref_idx[1]];
528  }
529 
530  if (neigh->pred_flag[0]) {
531  B = neigh->mv[0];
532  ref_B = neigh_refPicList[0].list[neigh->ref_idx[0]];
533  } else {
534  B = neigh->mv[1];
535  ref_B = neigh_refPicList[1].list[neigh->ref_idx[1]];
536  }
537 
538  if (ref_A == ref_B) {
539  if (abs(A.x - B.x) >= 4 || abs(A.y - B.y) >= 4)
540  return 1;
541  else
542  return 0;
543  } else
544  return 1;
545  }
546  }
547 
548  return 1;
549 }
550 
551 void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0, int log2_trafo_size,
552  int slice_or_tiles_up_boundary, int slice_or_tiles_left_boundary)
553 {
554  MvField *tab_mvf = s->ref->tab_mvf;
555  int log2_min_pu_size = s->sps->log2_min_pu_size;
556  int log2_min_tu_size = s->sps->log2_min_tb_size;
557  int min_pu_width = s->sps->min_pu_width;
558  int min_tu_width = s->sps->min_tb_width;
559  int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * min_pu_width + (x0 >> log2_min_pu_size)].is_intra;
560 
561  int i, j;
562  int bs;
563 
564  if (y0 > 0 && (y0 & 7) == 0) {
565  int yp_pu = (y0 - 1) >> log2_min_pu_size;
566  int yq_pu = y0 >> log2_min_pu_size;
567  int yp_tu = (y0 - 1) >> log2_min_tu_size;
568  int yq_tu = y0 >> log2_min_tu_size;
569 
570  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
571  int x_pu = (x0 + i) >> log2_min_pu_size;
572  int x_tu = (x0 + i) >> log2_min_tu_size;
573  MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
574  MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
575  uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu];
576  uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu];
577  RefPicList* top_refPicList = ff_hevc_get_ref_list(s, s->ref, x0 + i, y0 - 1);
578 
579  bs = boundary_strength(s, curr, curr_cbf_luma, top, top_cbf_luma, top_refPicList, 1);
580  if (!s->sh.slice_loop_filter_across_slices_enabled_flag && (slice_or_tiles_up_boundary & 1) && (y0 % (1 << s->sps->log2_ctb_size)) == 0)
581  bs = 0;
582  else if (!s->pps->loop_filter_across_tiles_enabled_flag && (slice_or_tiles_up_boundary & 2) && (y0 % (1 << s->sps->log2_ctb_size)) == 0)
583  bs = 0;
584  if (y0 == 0 || s->sh.disable_deblocking_filter_flag == 1)
585  bs = 0;
586  if (bs)
587  s->horizontal_bs[((x0 + i) + y0 * s->bs_width) >> 2] = bs;
588  }
589  }
590 
591  // bs for TU internal horizontal PU boundaries
592  if (log2_trafo_size > s->sps->log2_min_pu_size && !is_intra)
593  for (j = 8; j < (1 << log2_trafo_size); j += 8) {
594  int yp_pu = (y0 + j - 1) >> log2_min_pu_size;
595  int yq_pu = (y0 + j) >> log2_min_pu_size;
596  int yp_tu = (y0 + j - 1) >> log2_min_tu_size;
597  int yq_tu = (y0 + j) >> log2_min_tu_size;
598 
599 
600  for (i = 0; i < (1<<log2_trafo_size); i += 4) {
601  int x_pu = (x0 + i) >> log2_min_pu_size;
602  int x_tu = (x0 + i) >> log2_min_tu_size;
603  MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
604  MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
605  uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu];
606  uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu];
607  RefPicList* top_refPicList = ff_hevc_get_ref_list(s, s->ref, x0 + i, y0 + j - 1);
608 
609  bs = boundary_strength(s, curr, curr_cbf_luma, top, top_cbf_luma, top_refPicList, 0);
611  bs = 0;
612  if (bs)
613  s->horizontal_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
614  }
615  }
616 
617  // bs for vertical TU boundaries
618  if (x0 > 0 && (x0 & 7) == 0) {
619  int xp_pu = (x0 - 1) >> log2_min_pu_size;
620  int xq_pu = x0 >> log2_min_pu_size;
621  int xp_tu = (x0 - 1) >> log2_min_tu_size;
622  int xq_tu = x0 >> log2_min_tu_size;
623 
624  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
625  int y_pu = (y0 + i) >> log2_min_pu_size;
626  int y_tu = (y0 + i) >> log2_min_tu_size;
627  MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
628  MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
629 
630  uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu];
631  uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu];
632  RefPicList* left_refPicList = ff_hevc_get_ref_list(s, s->ref, x0 - 1, y0 + i);
633 
634  bs = boundary_strength(s, curr, curr_cbf_luma, left, left_cbf_luma, left_refPicList, 1);
635  if (!s->sh.slice_loop_filter_across_slices_enabled_flag && (slice_or_tiles_left_boundary & 1) && (x0 % (1 << s->sps->log2_ctb_size)) == 0)
636  bs = 0;
637  else if (!s->pps->loop_filter_across_tiles_enabled_flag && (slice_or_tiles_left_boundary & 2) && (x0 % (1 << s->sps->log2_ctb_size)) == 0)
638  bs = 0;
639  if (x0 == 0 || s->sh.disable_deblocking_filter_flag == 1)
640  bs = 0;
641  if (bs)
642  s->vertical_bs[(x0 >> 3) + ((y0 + i) >> 2) * s->bs_width] = bs;
643  }
644  }
645 
646  // bs for TU internal vertical PU boundaries
647  if (log2_trafo_size > log2_min_pu_size && !is_intra)
648  for (j = 0; j < (1 << log2_trafo_size); j += 4) {
649  int y_pu = (y0 + j) >> log2_min_pu_size;
650  int y_tu = (y0 + j) >> log2_min_tu_size;
651 
652  for (i = 8; i < (1 << log2_trafo_size); i += 8) {
653  int xp_pu = (x0 + i - 1) >> log2_min_pu_size;
654  int xq_pu = (x0 + i) >> log2_min_pu_size;
655  int xp_tu = (x0 + i - 1) >> log2_min_tu_size;
656  int xq_tu = (x0 + i) >> log2_min_tu_size;
657  MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
658  MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
659  uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu];
660  uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu];
661  RefPicList* left_refPicList = ff_hevc_get_ref_list(s, s->ref, x0 + i - 1, y0 + j);
662 
663  bs = boundary_strength(s, curr, curr_cbf_luma, left, left_cbf_luma, left_refPicList, 0);
665  bs = 0;
666  if (bs)
667  s->vertical_bs[((x0 + i) >> 3) + ((y0 + j) >> 2) * s->bs_width] = bs;
668  }
669  }
670 }
671 #undef LUMA
672 #undef CB
673 #undef CR
674 
675 void ff_hevc_hls_filter(HEVCContext *s, int x, int y)
676 {
677  deblocking_filter_CTB(s, x, y);
678  if (s->sps->sao_enabled)
679  sao_filter_CTB(s, x, y);
680 }
681 
682 void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
683 {
684  if (y_ctb && x_ctb)
685  ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb - ctb_size);
686  if (y_ctb && x_ctb >= s->sps->width - ctb_size) {
687  ff_hevc_hls_filter(s, x_ctb, y_ctb - ctb_size);
688  if (s->threads_type == FF_THREAD_FRAME )
689  ff_thread_report_progress(&s->ref->tf, y_ctb - ctb_size, 0);
690  }
691  if (x_ctb && y_ctb >= s->sps->height - ctb_size)
692  ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb);
693 }
unsigned int log2_min_cb_size
Definition: hevc.h:427
const char * s
Definition: avisynth_c.h:668
HEVCFrame * ref
Definition: hevc.h:798
Definition: hevc.h:623
int ctb_height
Definition: hevc.h:441
uint8_t is_cu_qp_delta_coded
Definition: hevc.h:662
RefPicList * ff_hevc_get_ref_list(HEVCContext *s, HEVCFrame *frame, int x0, int y0)
Definition: hevc_refs.c:52
int16_t x
horizontal component of motion vector
Definition: hevc.h:619
MvField * tab_mvf
Definition: hevc.h:690
int bs_width
Definition: hevc.h:805
AVFrame * sao_frame
Definition: hevc.h:777
int vshift[3]
Definition: hevc.h:451
Definition: vf_geq.c:45
int tc_offset
Definition: hevc.h:680
Clip a signed integer value into the amin-amax range.
Definition: avcodec.h:1429
#define tc
Definition: regdef.h:69
void(* sao_edge_filter[4])(uint8_t *_dst, uint8_t *_src, ptrdiff_t _stride, struct SAOParams *sao, int *borders, int _width, int _height, int c_idx, uint8_t vert_edge, uint8_t horiz_edge, uint8_t diag_edge)
Definition: hevcdsp.h:44
int min_cb_height
Definition: hevc.h:444
int list[MAX_REFS]
Definition: hevc.h:273
int stride
Definition: mace.c:144
int width
Definition: hevc.h:438
uint8_t threads_type
Definition: hevc.h:765
int qp_bd_offset
Definition: hevc.h:453
static int get_qPy_pred(HEVCContext *s, int xC, int yC, int xBase, int yBase, int log2_cb_size)
Definition: hevc_filter.c:74
int pixel_shift
Definition: hevc.h:387
if((e=av_dict_get(options,"", NULL, AV_DICT_IGNORE_SUFFIX)))
Definition: avfilter.c:965
static void copy_CTB(uint8_t *dst, uint8_t *src, int width, int height, int stride)
Definition: hevc_filter.c:171
static void sao_filter_CTB(HEVCContext *s, int x, int y)
Definition: hevc_filter.c:184
#define DEFAULT_INTRA_TC_OFFSET
Definition: hevc.h:62
#define LUMA
Definition: hevc_filter.c:33
int end_of_tiles_x
Definition: hevc.h:743
uint8_t
static const uint8_t offset[511][2]
Definition: vf_uspp.c:58
int min_tb_width
Definition: hevc.h:445
void(* hevc_h_loop_filter_luma_c)(uint8_t *_pix, ptrdiff_t _stride, int *_beta, int *_tc, uint8_t *_no_p, uint8_t *_no_q)
Definition: hevcdsp.h:67
SAOParams * sao
Definition: hevc.h:794
int min_cb_width
Definition: hevc.h:443
ThreadFrame tf
Definition: hevc.h:689
static const uint8_t tctable[54]
Definition: hevc_filter.c:37
void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0, int log2_trafo_size, int slice_or_tiles_up_boundary, int slice_or_tiles_left_boundary)
Definition: hevc_filter.c:551
int8_t * qp_y_tab
Definition: hevc.h:814
uint8_t loop_filter_disable_flag
Definition: hevc.h:422
#define A(x)
Definition: vp56_arith.h:28
static const uint8_t betatable[52]
Definition: hevc_filter.c:43
uint8_t transquant_bypass_enable_flag
Definition: hevc.h:479
uint8_t first_qp_group
Definition: hevc.h:727
HEVCDSPContext hevcdsp
Definition: hevc.h:811
const HEVCSPS * sps
Definition: hevc.h:781
void(* hevc_v_loop_filter_chroma)(uint8_t *_pix, ptrdiff_t _stride, int *_tc, uint8_t *_no_p, uint8_t *_no_q)
Definition: hevcdsp.h:66
int min_pu_height
Definition: hevc.h:448
void(* hevc_h_loop_filter_chroma_c)(uint8_t *_pix, ptrdiff_t _stride, int *_tc, uint8_t *_no_p, uint8_t *_no_q)
Definition: hevcdsp.h:69
void(* hevc_h_loop_filter_chroma)(uint8_t *_pix, ptrdiff_t _stride, int *_tc, uint8_t *_no_p, uint8_t *_no_q)
Definition: hevcdsp.h:65
RefPicList * refPicList
Definition: hevc.h:691
unsigned int log2_ctb_size
Definition: hevc.h:431
#define TC_CALC(qp, bs)
Definition: hevc_filter.c:311
int8_t slice_qp
Definition: hevc.h:578
int off
Definition: dsputil_bfin.c:29
uint8_t * vertical_bs
Definition: hevc.h:817
uint8_t tiles_enabled_flag
Definition: hevc.h:482
common internal API header
uint8_t is_intra
Definition: hevc.h:627
void(* sao_band_filter[4])(uint8_t *_dst, uint8_t *_src, ptrdiff_t _stride, struct SAOParams *sao, int *borders, int width, int height, int c_idx)
Definition: hevcdsp.h:42
float y
int hshift[3]
Definition: hevc.h:450
#define FFMIN(a, b)
Definition: avcodec.h:925
int8_t qp_y
Definition: hevc.h:733
Context Adaptive Binary Arithmetic Coder inline functions.
int ctb_width
Definition: hevc.h:440
HEVCPPS * pps
Definition: hevc.h:782
int height
Definition: hevc.h:439
void ff_hevc_set_qPy(HEVCContext *s, int xC, int yC, int xBase, int yBase, int log2_cb_size)
Definition: hevc_filter.c:152
void(* hevc_v_loop_filter_luma_c)(uint8_t *_pix, ptrdiff_t _stride, int *_beta, int *_tc, uint8_t *_no_p, uint8_t *_no_q)
Definition: hevcdsp.h:68
Definition: hevc.h:241
static int width
Definition: utils.c:158
AVS_Value src
Definition: avisynth_c.h:523
int * ctb_addr_rs_to_ts
CtbAddrRSToTS.
Definition: hevc.h:516
unsigned int log2_min_pu_size
Definition: hevc.h:432
int8_t pred_flag[2]
Definition: hevc.h:626
#define MAX_QP
Definition: hevc.h:61
uint8_t sao_enabled
Definition: hevc.h:410
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:2607
int16_t y
vertical component of motion vector
Definition: hevc.h:620
uint8_t loop_filter_across_tiles_enabled_flag
Definition: hevc.h:488
TransformUnit tu
Definition: hevc.h:736
int cu_qp_delta
Definition: hevc.h:658
uint8_t * is_pcm
Definition: hevc.h:829
BYTE int const BYTE int int int height
Definition: avisynth_c.h:713
#define CTB(tab, x, y)
Definition: hevc_filter.c:182
AVFrame * frame
Definition: hevc.h:776
DBParams * deblock
Definition: hevc.h:795
void(* hevc_v_loop_filter_luma)(uint8_t *_pix, ptrdiff_t _stride, int *_beta, int *_tc, uint8_t *_no_p, uint8_t *_no_q)
Definition: hevcdsp.h:64
unsigned int log2_min_tb_size
Definition: hevc.h:429
static int get_qPy(HEVCContext *s, int xC, int yC)
Definition: hevc_filter.c:163
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:124
static int boundary_strength(HEVCContext *s, MvField *curr, uint8_t curr_cbf_luma, MvField *neigh, uint8_t neigh_cbf_luma, RefPicList *neigh_refPicList, int tu_border)
Definition: hevc_filter.c:473
int start_of_tiles_x
Definition: hevc.h:742
Definition: hevc.h:618
int * tile_id
TileId.
Definition: hevc.h:518
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
Definition: pthread.c:666
HEVCLocalContext * HEVClc
Definition: hevc.h:763
int cr_qp_offset
Definition: hevc.h:474
static int get_pcm(HEVCContext *s, int x, int y)
Definition: hevc_filter.c:299
void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
Definition: hevc_filter.c:682
Mv mv[2]
Definition: hevc.h:624
void(* hevc_v_loop_filter_chroma_c)(uint8_t *_pix, ptrdiff_t _stride, int *_tc, uint8_t *_no_p, uint8_t *_no_q)
Definition: hevcdsp.h:70
static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)
Definition: hevc_filter.c:49
int8_t ref_idx[2]
Definition: hevc.h:625
uint8_t * horizontal_bs
Definition: hevc.h:816
void(* hevc_h_loop_filter_luma)(uint8_t *_pix, ptrdiff_t _stride, int *_beta, int *_tc, uint8_t *_no_p, uint8_t *_no_q)
Definition: hevcdsp.h:63
int32_t * tab_slice_address
Definition: hevc.h:819
uint8_t disable_deblocking_filter_flag
slice_header_disable_deblocking_filter_flag
Definition: hevc.h:557
uint8_t * filter_slice_edges
Definition: hevc.h:832
uint8_t slice_loop_filter_across_slices_enabled_flag
Definition: hevc.h:558
struct HEVCSPS::@64 pcm
int min_pu_width
Definition: hevc.h:447
int beta_offset
Definition: hevc.h:679
Definition: hevc.h:242
int diff_cu_qp_delta_depth
Definition: hevc.h:471
int cb_qp_offset
Definition: hevc.h:473
uint8_t * cbf_luma
Definition: hevc.h:828
SliceHeader sh
Definition: hevc.h:793
exp golomb vlc stuff
int pcm_enabled_flag
Definition: hevc.h:391
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:107
void ff_hevc_hls_filter(HEVCContext *s, int x, int y)
Definition: hevc_filter.c:675
static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0)
Definition: hevc_filter.c:313