• Main Page
  • Related Pages
  • Modules
  • Data Structures
  • Files
  • Examples
  • File List
  • Globals

libavcodec/vp3.c

Go to the documentation of this file.
00001 /*
00002  * Copyright (C) 2003-2004 the ffmpeg project
00003  *
00004  * This file is part of FFmpeg.
00005  *
00006  * FFmpeg is free software; you can redistribute it and/or
00007  * modify it under the terms of the GNU Lesser General Public
00008  * License as published by the Free Software Foundation; either
00009  * version 2.1 of the License, or (at your option) any later version.
00010  *
00011  * FFmpeg is distributed in the hope that it will be useful,
00012  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00013  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00014  * Lesser General Public License for more details.
00015  *
00016  * You should have received a copy of the GNU Lesser General Public
00017  * License along with FFmpeg; if not, write to the Free Software
00018  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00019  */
00020 
00032 #include <stdio.h>
00033 #include <stdlib.h>
00034 #include <string.h>
00035 
00036 #include "libavutil/imgutils.h"
00037 #include "avcodec.h"
00038 #include "dsputil.h"
00039 #include "get_bits.h"
00040 
00041 #include "vp3data.h"
00042 #include "xiph.h"
00043 #include "thread.h"
00044 
00045 #define FRAGMENT_PIXELS 8
00046 
00047 static av_cold int vp3_decode_end(AVCodecContext *avctx);
00048 static void vp3_decode_flush(AVCodecContext *avctx);
00049 
00050 //FIXME split things out into their own arrays
00051 typedef struct Vp3Fragment {
00052     int16_t dc;
00053     uint8_t coding_method;
00054     uint8_t qpi;
00055 } Vp3Fragment;
00056 
00057 #define SB_NOT_CODED        0
00058 #define SB_PARTIALLY_CODED  1
00059 #define SB_FULLY_CODED      2
00060 
00061 // This is the maximum length of a single long bit run that can be encoded
00062 // for superblock coding or block qps. Theora special-cases this to read a
00063 // bit instead of flipping the current bit to allow for runs longer than 4129.
00064 #define MAXIMUM_LONG_BIT_RUN 4129
00065 
00066 #define MODE_INTER_NO_MV      0
00067 #define MODE_INTRA            1
00068 #define MODE_INTER_PLUS_MV    2
00069 #define MODE_INTER_LAST_MV    3
00070 #define MODE_INTER_PRIOR_LAST 4
00071 #define MODE_USING_GOLDEN     5
00072 #define MODE_GOLDEN_MV        6
00073 #define MODE_INTER_FOURMV     7
00074 #define CODING_MODE_COUNT     8
00075 
00076 /* special internal mode */
00077 #define MODE_COPY             8
00078 
00079 /* There are 6 preset schemes, plus a free-form scheme */
00080 static const int ModeAlphabet[6][CODING_MODE_COUNT] =
00081 {
00082     /* scheme 1: Last motion vector dominates */
00083     {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
00084          MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
00085          MODE_INTRA,            MODE_USING_GOLDEN,
00086          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00087 
00088     /* scheme 2 */
00089     {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
00090          MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
00091          MODE_INTRA,            MODE_USING_GOLDEN,
00092          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00093 
00094     /* scheme 3 */
00095     {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
00096          MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
00097          MODE_INTRA,            MODE_USING_GOLDEN,
00098          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00099 
00100     /* scheme 4 */
00101     {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
00102          MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
00103          MODE_INTRA,            MODE_USING_GOLDEN,
00104          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00105 
00106     /* scheme 5: No motion vector dominates */
00107     {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
00108          MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
00109          MODE_INTRA,            MODE_USING_GOLDEN,
00110          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00111 
00112     /* scheme 6 */
00113     {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
00114          MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
00115          MODE_INTER_PLUS_MV,    MODE_INTRA,
00116          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00117 
00118 };
00119 
00120 static const uint8_t hilbert_offset[16][2] = {
00121     {0,0}, {1,0}, {1,1}, {0,1},
00122     {0,2}, {0,3}, {1,3}, {1,2},
00123     {2,2}, {2,3}, {3,3}, {3,2},
00124     {3,1}, {2,1}, {2,0}, {3,0}
00125 };
00126 
00127 #define MIN_DEQUANT_VAL 2
00128 
00129 typedef struct Vp3DecodeContext {
00130     AVCodecContext *avctx;
00131     int theora, theora_tables;
00132     int version;
00133     int width, height;
00134     int chroma_x_shift, chroma_y_shift;
00135     AVFrame golden_frame;
00136     AVFrame last_frame;
00137     AVFrame current_frame;
00138     int keyframe;
00139     DSPContext dsp;
00140     int flipped_image;
00141     int last_slice_end;
00142     int skip_loop_filter;
00143 
00144     int qps[3];
00145     int nqps;
00146     int last_qps[3];
00147 
00148     int superblock_count;
00149     int y_superblock_width;
00150     int y_superblock_height;
00151     int y_superblock_count;
00152     int c_superblock_width;
00153     int c_superblock_height;
00154     int c_superblock_count;
00155     int u_superblock_start;
00156     int v_superblock_start;
00157     unsigned char *superblock_coding;
00158 
00159     int macroblock_count;
00160     int macroblock_width;
00161     int macroblock_height;
00162 
00163     int fragment_count;
00164     int fragment_width[2];
00165     int fragment_height[2];
00166 
00167     Vp3Fragment *all_fragments;
00168     int fragment_start[3];
00169     int data_offset[3];
00170 
00171     int8_t (*motion_val[2])[2];
00172 
00173     ScanTable scantable;
00174 
00175     /* tables */
00176     uint16_t coded_dc_scale_factor[64];
00177     uint32_t coded_ac_scale_factor[64];
00178     uint8_t base_matrix[384][64];
00179     uint8_t qr_count[2][3];
00180     uint8_t qr_size [2][3][64];
00181     uint16_t qr_base[2][3][64];
00182 
00200     int16_t *dct_tokens[3][64];
00201     int16_t *dct_tokens_base;
00202 #define TOKEN_EOB(eob_run)              ((eob_run) << 2)
00203 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
00204 #define TOKEN_COEFF(coeff)              (((coeff) << 2) + 2)
00205 
00209     int num_coded_frags[3][64];
00210     int total_num_coded_frags;
00211 
00212     /* this is a list of indexes into the all_fragments array indicating
00213      * which of the fragments are coded */
00214     int *coded_fragment_list[3];
00215 
00216     VLC dc_vlc[16];
00217     VLC ac_vlc_1[16];
00218     VLC ac_vlc_2[16];
00219     VLC ac_vlc_3[16];
00220     VLC ac_vlc_4[16];
00221 
00222     VLC superblock_run_length_vlc;
00223     VLC fragment_run_length_vlc;
00224     VLC mode_code_vlc;
00225     VLC motion_vector_vlc;
00226 
00227     /* these arrays need to be on 16-byte boundaries since SSE2 operations
00228      * index into them */
00229     DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64];     //<qmat[qpi][is_inter][plane]
00230 
00231     /* This table contains superblock_count * 16 entries. Each set of 16
00232      * numbers corresponds to the fragment indexes 0..15 of the superblock.
00233      * An entry will be -1 to indicate that no entry corresponds to that
00234      * index. */
00235     int *superblock_fragments;
00236 
00237     /* This is an array that indicates how a particular macroblock
00238      * is coded. */
00239     unsigned char *macroblock_coding;
00240 
00241     uint8_t *edge_emu_buffer;
00242 
00243     /* Huffman decode */
00244     int hti;
00245     unsigned int hbits;
00246     int entries;
00247     int huff_code_size;
00248     uint32_t huffman_table[80][32][2];
00249 
00250     uint8_t filter_limit_values[64];
00251     DECLARE_ALIGNED(8, int, bounding_values_array)[256+2];
00252 } Vp3DecodeContext;
00253 
00254 /************************************************************************
00255  * VP3 specific functions
00256  ************************************************************************/
00257 
00258 /*
00259  * This function sets up all of the various blocks mappings:
00260  * superblocks <-> fragments, macroblocks <-> fragments,
00261  * superblocks <-> macroblocks
00262  *
00263  * @return 0 is successful; returns 1 if *anything* went wrong.
00264  */
00265 static int init_block_mapping(Vp3DecodeContext *s)
00266 {
00267     int sb_x, sb_y, plane;
00268     int x, y, i, j = 0;
00269 
00270     for (plane = 0; plane < 3; plane++) {
00271         int sb_width    = plane ? s->c_superblock_width  : s->y_superblock_width;
00272         int sb_height   = plane ? s->c_superblock_height : s->y_superblock_height;
00273         int frag_width  = s->fragment_width[!!plane];
00274         int frag_height = s->fragment_height[!!plane];
00275 
00276         for (sb_y = 0; sb_y < sb_height; sb_y++)
00277             for (sb_x = 0; sb_x < sb_width; sb_x++)
00278                 for (i = 0; i < 16; i++) {
00279                     x = 4*sb_x + hilbert_offset[i][0];
00280                     y = 4*sb_y + hilbert_offset[i][1];
00281 
00282                     if (x < frag_width && y < frag_height)
00283                         s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x;
00284                     else
00285                         s->superblock_fragments[j++] = -1;
00286                 }
00287     }
00288 
00289     return 0;  /* successful path out */
00290 }
00291 
00292 /*
00293  * This function sets up the dequantization tables used for a particular
00294  * frame.
00295  */
00296 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
00297 {
00298     int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
00299     int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
00300     int i, plane, inter, qri, bmi, bmj, qistart;
00301 
00302     for(inter=0; inter<2; inter++){
00303         for(plane=0; plane<3; plane++){
00304             int sum=0;
00305             for(qri=0; qri<s->qr_count[inter][plane]; qri++){
00306                 sum+= s->qr_size[inter][plane][qri];
00307                 if(s->qps[qpi] <= sum)
00308                     break;
00309             }
00310             qistart= sum - s->qr_size[inter][plane][qri];
00311             bmi= s->qr_base[inter][plane][qri  ];
00312             bmj= s->qr_base[inter][plane][qri+1];
00313             for(i=0; i<64; i++){
00314                 int coeff= (  2*(sum    -s->qps[qpi])*s->base_matrix[bmi][i]
00315                             - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
00316                             + s->qr_size[inter][plane][qri])
00317                            / (2*s->qr_size[inter][plane][qri]);
00318 
00319                 int qmin= 8<<(inter + !i);
00320                 int qscale= i ? ac_scale_factor : dc_scale_factor;
00321 
00322                 s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
00323             }
00324             // all DC coefficients use the same quant so as not to interfere with DC prediction
00325             s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
00326         }
00327     }
00328 }
00329 
00330 /*
00331  * This function initializes the loop filter boundary limits if the frame's
00332  * quality index is different from the previous frame's.
00333  *
00334  * The filter_limit_values may not be larger than 127.
00335  */
00336 static void init_loop_filter(Vp3DecodeContext *s)
00337 {
00338     int *bounding_values= s->bounding_values_array+127;
00339     int filter_limit;
00340     int x;
00341     int value;
00342 
00343     filter_limit = s->filter_limit_values[s->qps[0]];
00344 
00345     /* set up the bounding values */
00346     memset(s->bounding_values_array, 0, 256 * sizeof(int));
00347     for (x = 0; x < filter_limit; x++) {
00348         bounding_values[-x] = -x;
00349         bounding_values[x] = x;
00350     }
00351     for (x = value = filter_limit; x < 128 && value; x++, value--) {
00352         bounding_values[ x] =  value;
00353         bounding_values[-x] = -value;
00354     }
00355     if (value)
00356         bounding_values[128] = value;
00357     bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
00358 }
00359 
00360 /*
00361  * This function unpacks all of the superblock/macroblock/fragment coding
00362  * information from the bitstream.
00363  */
00364 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
00365 {
00366     int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start };
00367     int bit = 0;
00368     int current_superblock = 0;
00369     int current_run = 0;
00370     int num_partial_superblocks = 0;
00371 
00372     int i, j;
00373     int current_fragment;
00374     int plane;
00375 
00376     if (s->keyframe) {
00377         memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
00378 
00379     } else {
00380 
00381         /* unpack the list of partially-coded superblocks */
00382         bit = get_bits1(gb) ^ 1;
00383         current_run = 0;
00384 
00385         while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
00386             if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
00387                 bit = get_bits1(gb);
00388             else
00389                 bit ^= 1;
00390 
00391                 current_run = get_vlc2(gb,
00392                     s->superblock_run_length_vlc.table, 6, 2) + 1;
00393                 if (current_run == 34)
00394                     current_run += get_bits(gb, 12);
00395 
00396             if (current_superblock + current_run > s->superblock_count) {
00397                 av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
00398                 return -1;
00399             }
00400 
00401             memset(s->superblock_coding + current_superblock, bit, current_run);
00402 
00403             current_superblock += current_run;
00404             if (bit)
00405                 num_partial_superblocks += current_run;
00406         }
00407 
00408         /* unpack the list of fully coded superblocks if any of the blocks were
00409          * not marked as partially coded in the previous step */
00410         if (num_partial_superblocks < s->superblock_count) {
00411             int superblocks_decoded = 0;
00412 
00413             current_superblock = 0;
00414             bit = get_bits1(gb) ^ 1;
00415             current_run = 0;
00416 
00417             while (superblocks_decoded < s->superblock_count - num_partial_superblocks
00418                    && get_bits_left(gb) > 0) {
00419 
00420                 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
00421                     bit = get_bits1(gb);
00422                 else
00423                     bit ^= 1;
00424 
00425                         current_run = get_vlc2(gb,
00426                             s->superblock_run_length_vlc.table, 6, 2) + 1;
00427                         if (current_run == 34)
00428                             current_run += get_bits(gb, 12);
00429 
00430                 for (j = 0; j < current_run; current_superblock++) {
00431                     if (current_superblock >= s->superblock_count) {
00432                         av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
00433                         return -1;
00434                     }
00435 
00436                 /* skip any superblocks already marked as partially coded */
00437                 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
00438                     s->superblock_coding[current_superblock] = 2*bit;
00439                     j++;
00440                 }
00441                 }
00442                 superblocks_decoded += current_run;
00443             }
00444         }
00445 
00446         /* if there were partial blocks, initialize bitstream for
00447          * unpacking fragment codings */
00448         if (num_partial_superblocks) {
00449 
00450             current_run = 0;
00451             bit = get_bits1(gb);
00452             /* toggle the bit because as soon as the first run length is
00453              * fetched the bit will be toggled again */
00454             bit ^= 1;
00455         }
00456     }
00457 
00458     /* figure out which fragments are coded; iterate through each
00459      * superblock (all planes) */
00460     s->total_num_coded_frags = 0;
00461     memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
00462 
00463     for (plane = 0; plane < 3; plane++) {
00464         int sb_start = superblock_starts[plane];
00465         int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count);
00466         int num_coded_frags = 0;
00467 
00468     for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
00469 
00470         /* iterate through all 16 fragments in a superblock */
00471         for (j = 0; j < 16; j++) {
00472 
00473             /* if the fragment is in bounds, check its coding status */
00474             current_fragment = s->superblock_fragments[i * 16 + j];
00475             if (current_fragment != -1) {
00476                 int coded = s->superblock_coding[i];
00477 
00478                 if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
00479 
00480                     /* fragment may or may not be coded; this is the case
00481                      * that cares about the fragment coding runs */
00482                     if (current_run-- == 0) {
00483                         bit ^= 1;
00484                         current_run = get_vlc2(gb,
00485                             s->fragment_run_length_vlc.table, 5, 2);
00486                     }
00487                     coded = bit;
00488                 }
00489 
00490                     if (coded) {
00491                         /* default mode; actual mode will be decoded in
00492                          * the next phase */
00493                         s->all_fragments[current_fragment].coding_method =
00494                             MODE_INTER_NO_MV;
00495                         s->coded_fragment_list[plane][num_coded_frags++] =
00496                             current_fragment;
00497                     } else {
00498                         /* not coded; copy this fragment from the prior frame */
00499                         s->all_fragments[current_fragment].coding_method =
00500                             MODE_COPY;
00501                     }
00502             }
00503         }
00504     }
00505         s->total_num_coded_frags += num_coded_frags;
00506         for (i = 0; i < 64; i++)
00507             s->num_coded_frags[plane][i] = num_coded_frags;
00508         if (plane < 2)
00509             s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags;
00510     }
00511     return 0;
00512 }
00513 
00514 /*
00515  * This function unpacks all the coding mode data for individual macroblocks
00516  * from the bitstream.
00517  */
00518 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
00519 {
00520     int i, j, k, sb_x, sb_y;
00521     int scheme;
00522     int current_macroblock;
00523     int current_fragment;
00524     int coding_mode;
00525     int custom_mode_alphabet[CODING_MODE_COUNT];
00526     const int *alphabet;
00527     Vp3Fragment *frag;
00528 
00529     if (s->keyframe) {
00530         for (i = 0; i < s->fragment_count; i++)
00531             s->all_fragments[i].coding_method = MODE_INTRA;
00532 
00533     } else {
00534 
00535         /* fetch the mode coding scheme for this frame */
00536         scheme = get_bits(gb, 3);
00537 
00538         /* is it a custom coding scheme? */
00539         if (scheme == 0) {
00540             for (i = 0; i < 8; i++)
00541                 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
00542             for (i = 0; i < 8; i++)
00543                 custom_mode_alphabet[get_bits(gb, 3)] = i;
00544             alphabet = custom_mode_alphabet;
00545         } else
00546             alphabet = ModeAlphabet[scheme-1];
00547 
00548         /* iterate through all of the macroblocks that contain 1 or more
00549          * coded fragments */
00550         for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
00551             for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
00552                 if (get_bits_left(gb) <= 0)
00553                     return -1;
00554 
00555             for (j = 0; j < 4; j++) {
00556                 int mb_x = 2*sb_x +   (j>>1);
00557                 int mb_y = 2*sb_y + (((j>>1)+j)&1);
00558                 current_macroblock = mb_y * s->macroblock_width + mb_x;
00559 
00560                 if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
00561                     continue;
00562 
00563 #define BLOCK_X (2*mb_x + (k&1))
00564 #define BLOCK_Y (2*mb_y + (k>>1))
00565                 /* coding modes are only stored if the macroblock has at least one
00566                  * luma block coded, otherwise it must be INTER_NO_MV */
00567                 for (k = 0; k < 4; k++) {
00568                     current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
00569                     if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
00570                         break;
00571                 }
00572                 if (k == 4) {
00573                     s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
00574                     continue;
00575                 }
00576 
00577                 /* mode 7 means get 3 bits for each coding mode */
00578                 if (scheme == 7)
00579                     coding_mode = get_bits(gb, 3);
00580                 else
00581                     coding_mode = alphabet
00582                         [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
00583 
00584                 s->macroblock_coding[current_macroblock] = coding_mode;
00585                 for (k = 0; k < 4; k++) {
00586                     frag = s->all_fragments + BLOCK_Y*s->fragment_width[0] + BLOCK_X;
00587                     if (frag->coding_method != MODE_COPY)
00588                         frag->coding_method = coding_mode;
00589                 }
00590 
00591 #define SET_CHROMA_MODES \
00592     if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
00593         frag[s->fragment_start[1]].coding_method = coding_mode;\
00594     if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
00595         frag[s->fragment_start[2]].coding_method = coding_mode;
00596 
00597                 if (s->chroma_y_shift) {
00598                     frag = s->all_fragments + mb_y*s->fragment_width[1] + mb_x;
00599                     SET_CHROMA_MODES
00600                 } else if (s->chroma_x_shift) {
00601                     frag = s->all_fragments + 2*mb_y*s->fragment_width[1] + mb_x;
00602                     for (k = 0; k < 2; k++) {
00603                         SET_CHROMA_MODES
00604                         frag += s->fragment_width[1];
00605                     }
00606                 } else {
00607                     for (k = 0; k < 4; k++) {
00608                         frag = s->all_fragments + BLOCK_Y*s->fragment_width[1] + BLOCK_X;
00609                         SET_CHROMA_MODES
00610                     }
00611                 }
00612             }
00613             }
00614         }
00615     }
00616 
00617     return 0;
00618 }
00619 
00620 /*
00621  * This function unpacks all the motion vectors for the individual
00622  * macroblocks from the bitstream.
00623  */
00624 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
00625 {
00626     int j, k, sb_x, sb_y;
00627     int coding_mode;
00628     int motion_x[4];
00629     int motion_y[4];
00630     int last_motion_x = 0;
00631     int last_motion_y = 0;
00632     int prior_last_motion_x = 0;
00633     int prior_last_motion_y = 0;
00634     int current_macroblock;
00635     int current_fragment;
00636     int frag;
00637 
00638     if (s->keyframe)
00639         return 0;
00640 
00641     /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
00642     coding_mode = get_bits1(gb);
00643 
00644     /* iterate through all of the macroblocks that contain 1 or more
00645      * coded fragments */
00646     for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
00647         for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
00648             if (get_bits_left(gb) <= 0)
00649                 return -1;
00650 
00651         for (j = 0; j < 4; j++) {
00652             int mb_x = 2*sb_x +   (j>>1);
00653             int mb_y = 2*sb_y + (((j>>1)+j)&1);
00654             current_macroblock = mb_y * s->macroblock_width + mb_x;
00655 
00656             if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
00657                 (s->macroblock_coding[current_macroblock] == MODE_COPY))
00658                 continue;
00659 
00660             switch (s->macroblock_coding[current_macroblock]) {
00661 
00662             case MODE_INTER_PLUS_MV:
00663             case MODE_GOLDEN_MV:
00664                 /* all 6 fragments use the same motion vector */
00665                 if (coding_mode == 0) {
00666                     motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
00667                     motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
00668                 } else {
00669                     motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
00670                     motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
00671                 }
00672 
00673                 /* vector maintenance, only on MODE_INTER_PLUS_MV */
00674                 if (s->macroblock_coding[current_macroblock] ==
00675                     MODE_INTER_PLUS_MV) {
00676                     prior_last_motion_x = last_motion_x;
00677                     prior_last_motion_y = last_motion_y;
00678                     last_motion_x = motion_x[0];
00679                     last_motion_y = motion_y[0];
00680                 }
00681                 break;
00682 
00683             case MODE_INTER_FOURMV:
00684                 /* vector maintenance */
00685                 prior_last_motion_x = last_motion_x;
00686                 prior_last_motion_y = last_motion_y;
00687 
00688                 /* fetch 4 vectors from the bitstream, one for each
00689                  * Y fragment, then average for the C fragment vectors */
00690                 for (k = 0; k < 4; k++) {
00691                     current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
00692                     if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
00693                         if (coding_mode == 0) {
00694                             motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
00695                             motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
00696                         } else {
00697                             motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
00698                             motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
00699                         }
00700                         last_motion_x = motion_x[k];
00701                         last_motion_y = motion_y[k];
00702                     } else {
00703                         motion_x[k] = 0;
00704                         motion_y[k] = 0;
00705                     }
00706                 }
00707                 break;
00708 
00709             case MODE_INTER_LAST_MV:
00710                 /* all 6 fragments use the last motion vector */
00711                 motion_x[0] = last_motion_x;
00712                 motion_y[0] = last_motion_y;
00713 
00714                 /* no vector maintenance (last vector remains the
00715                  * last vector) */
00716                 break;
00717 
00718             case MODE_INTER_PRIOR_LAST:
00719                 /* all 6 fragments use the motion vector prior to the
00720                  * last motion vector */
00721                 motion_x[0] = prior_last_motion_x;
00722                 motion_y[0] = prior_last_motion_y;
00723 
00724                 /* vector maintenance */
00725                 prior_last_motion_x = last_motion_x;
00726                 prior_last_motion_y = last_motion_y;
00727                 last_motion_x = motion_x[0];
00728                 last_motion_y = motion_y[0];
00729                 break;
00730 
00731             default:
00732                 /* covers intra, inter without MV, golden without MV */
00733                 motion_x[0] = 0;
00734                 motion_y[0] = 0;
00735 
00736                 /* no vector maintenance */
00737                 break;
00738             }
00739 
00740             /* assign the motion vectors to the correct fragments */
00741             for (k = 0; k < 4; k++) {
00742                 current_fragment =
00743                     BLOCK_Y*s->fragment_width[0] + BLOCK_X;
00744                 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
00745                     s->motion_val[0][current_fragment][0] = motion_x[k];
00746                     s->motion_val[0][current_fragment][1] = motion_y[k];
00747                 } else {
00748                     s->motion_val[0][current_fragment][0] = motion_x[0];
00749                     s->motion_val[0][current_fragment][1] = motion_y[0];
00750                 }
00751             }
00752 
00753             if (s->chroma_y_shift) {
00754                 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
00755                     motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2);
00756                     motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2);
00757                 }
00758                 motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
00759                 motion_y[0] = (motion_y[0]>>1) | (motion_y[0]&1);
00760                 frag = mb_y*s->fragment_width[1] + mb_x;
00761                 s->motion_val[1][frag][0] = motion_x[0];
00762                 s->motion_val[1][frag][1] = motion_y[0];
00763             } else if (s->chroma_x_shift) {
00764                 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
00765                     motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
00766                     motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
00767                     motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
00768                     motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
00769                 } else {
00770                     motion_x[1] = motion_x[0];
00771                     motion_y[1] = motion_y[0];
00772                 }
00773                 motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
00774                 motion_x[1] = (motion_x[1]>>1) | (motion_x[1]&1);
00775 
00776                 frag = 2*mb_y*s->fragment_width[1] + mb_x;
00777                 for (k = 0; k < 2; k++) {
00778                     s->motion_val[1][frag][0] = motion_x[k];
00779                     s->motion_val[1][frag][1] = motion_y[k];
00780                     frag += s->fragment_width[1];
00781                 }
00782             } else {
00783                 for (k = 0; k < 4; k++) {
00784                     frag = BLOCK_Y*s->fragment_width[1] + BLOCK_X;
00785                     if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
00786                         s->motion_val[1][frag][0] = motion_x[k];
00787                         s->motion_val[1][frag][1] = motion_y[k];
00788                     } else {
00789                         s->motion_val[1][frag][0] = motion_x[0];
00790                         s->motion_val[1][frag][1] = motion_y[0];
00791                     }
00792                 }
00793             }
00794         }
00795         }
00796     }
00797 
00798     return 0;
00799 }
00800 
00801 static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
00802 {
00803     int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
00804     int num_blocks = s->total_num_coded_frags;
00805 
00806     for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
00807         i = blocks_decoded = num_blocks_at_qpi = 0;
00808 
00809         bit = get_bits1(gb) ^ 1;
00810         run_length = 0;
00811 
00812         do {
00813             if (run_length == MAXIMUM_LONG_BIT_RUN)
00814                 bit = get_bits1(gb);
00815             else
00816                 bit ^= 1;
00817 
00818             run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
00819             if (run_length == 34)
00820                 run_length += get_bits(gb, 12);
00821             blocks_decoded += run_length;
00822 
00823             if (!bit)
00824                 num_blocks_at_qpi += run_length;
00825 
00826             for (j = 0; j < run_length; i++) {
00827                 if (i >= s->total_num_coded_frags)
00828                     return -1;
00829 
00830                 if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
00831                     s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
00832                     j++;
00833                 }
00834             }
00835         } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
00836 
00837         num_blocks -= num_blocks_at_qpi;
00838     }
00839 
00840     return 0;
00841 }
00842 
00843 /*
00844  * This function is called by unpack_dct_coeffs() to extract the VLCs from
00845  * the bitstream. The VLCs encode tokens which are used to unpack DCT
00846  * data. This function unpacks all the VLCs for either the Y plane or both
00847  * C planes, and is called for DC coefficients or different AC coefficient
00848  * levels (since different coefficient types require different VLC tables.
00849  *
00850  * This function returns a residual eob run. E.g, if a particular token gave
00851  * instructions to EOB the next 5 fragments and there were only 2 fragments
00852  * left in the current fragment range, 3 would be returned so that it could
00853  * be passed into the next call to this same function.
00854  */
00855 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
00856                         VLC *table, int coeff_index,
00857                         int plane,
00858                         int eob_run)
00859 {
00860     int i, j = 0;
00861     int token;
00862     int zero_run = 0;
00863     DCTELEM coeff = 0;
00864     int bits_to_get;
00865     int blocks_ended;
00866     int coeff_i = 0;
00867     int num_coeffs = s->num_coded_frags[plane][coeff_index];
00868     int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
00869 
00870     /* local references to structure members to avoid repeated deferences */
00871     int *coded_fragment_list = s->coded_fragment_list[plane];
00872     Vp3Fragment *all_fragments = s->all_fragments;
00873     VLC_TYPE (*vlc_table)[2] = table->table;
00874 
00875     if (num_coeffs < 0)
00876         av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index);
00877 
00878     if (eob_run > num_coeffs) {
00879         coeff_i = blocks_ended = num_coeffs;
00880         eob_run -= num_coeffs;
00881     } else {
00882         coeff_i = blocks_ended = eob_run;
00883         eob_run = 0;
00884     }
00885 
00886     // insert fake EOB token to cover the split between planes or zzi
00887     if (blocks_ended)
00888         dct_tokens[j++] = blocks_ended << 2;
00889 
00890     while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
00891             /* decode a VLC into a token */
00892             token = get_vlc2(gb, vlc_table, 11, 3);
00893             /* use the token to get a zero run, a coefficient, and an eob run */
00894             if ((unsigned) token <= 6U) {
00895                 eob_run = eob_run_base[token];
00896                 if (eob_run_get_bits[token])
00897                     eob_run += get_bits(gb, eob_run_get_bits[token]);
00898 
00899                 // record only the number of blocks ended in this plane,
00900                 // any spill will be recorded in the next plane.
00901                 if (eob_run > num_coeffs - coeff_i) {
00902                     dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
00903                     blocks_ended   += num_coeffs - coeff_i;
00904                     eob_run        -= num_coeffs - coeff_i;
00905                     coeff_i         = num_coeffs;
00906                 } else {
00907                     dct_tokens[j++] = TOKEN_EOB(eob_run);
00908                     blocks_ended   += eob_run;
00909                     coeff_i        += eob_run;
00910                     eob_run = 0;
00911                 }
00912             } else if (token >= 0) {
00913                 bits_to_get = coeff_get_bits[token];
00914                 if (bits_to_get)
00915                     bits_to_get = get_bits(gb, bits_to_get);
00916                 coeff = coeff_tables[token][bits_to_get];
00917 
00918                 zero_run = zero_run_base[token];
00919                 if (zero_run_get_bits[token])
00920                     zero_run += get_bits(gb, zero_run_get_bits[token]);
00921 
00922                 if (zero_run) {
00923                     dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
00924                 } else {
00925                     // Save DC into the fragment structure. DC prediction is
00926                     // done in raster order, so the actual DC can't be in with
00927                     // other tokens. We still need the token in dct_tokens[]
00928                     // however, or else the structure collapses on itself.
00929                     if (!coeff_index)
00930                         all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
00931 
00932                     dct_tokens[j++] = TOKEN_COEFF(coeff);
00933                 }
00934 
00935                 if (coeff_index + zero_run > 64) {
00936                     av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with"
00937                            " %d coeffs left\n", zero_run, 64-coeff_index);
00938                     zero_run = 64 - coeff_index;
00939                 }
00940 
00941                 // zero runs code multiple coefficients,
00942                 // so don't try to decode coeffs for those higher levels
00943                 for (i = coeff_index+1; i <= coeff_index+zero_run; i++)
00944                     s->num_coded_frags[plane][i]--;
00945                 coeff_i++;
00946             } else {
00947                 av_log(s->avctx, AV_LOG_ERROR,
00948                        "Invalid token %d\n", token);
00949                 return -1;
00950             }
00951     }
00952 
00953     if (blocks_ended > s->num_coded_frags[plane][coeff_index])
00954         av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
00955 
00956     // decrement the number of blocks that have higher coeffecients for each
00957     // EOB run at this level
00958     if (blocks_ended)
00959         for (i = coeff_index+1; i < 64; i++)
00960             s->num_coded_frags[plane][i] -= blocks_ended;
00961 
00962     // setup the next buffer
00963     if (plane < 2)
00964         s->dct_tokens[plane+1][coeff_index] = dct_tokens + j;
00965     else if (coeff_index < 63)
00966         s->dct_tokens[0][coeff_index+1] = dct_tokens + j;
00967 
00968     return eob_run;
00969 }
00970 
00971 static void reverse_dc_prediction(Vp3DecodeContext *s,
00972                                   int first_fragment,
00973                                   int fragment_width,
00974                                   int fragment_height);
00975 /*
00976  * This function unpacks all of the DCT coefficient data from the
00977  * bitstream.
00978  */
00979 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
00980 {
00981     int i;
00982     int dc_y_table;
00983     int dc_c_table;
00984     int ac_y_table;
00985     int ac_c_table;
00986     int residual_eob_run = 0;
00987     VLC *y_tables[64];
00988     VLC *c_tables[64];
00989 
00990     s->dct_tokens[0][0] = s->dct_tokens_base;
00991 
00992     /* fetch the DC table indexes */
00993     dc_y_table = get_bits(gb, 4);
00994     dc_c_table = get_bits(gb, 4);
00995 
00996     /* unpack the Y plane DC coefficients */
00997     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
00998         0, residual_eob_run);
00999     if (residual_eob_run < 0)
01000         return residual_eob_run;
01001 
01002     /* reverse prediction of the Y-plane DC coefficients */
01003     reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
01004 
01005     /* unpack the C plane DC coefficients */
01006     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
01007         1, residual_eob_run);
01008     if (residual_eob_run < 0)
01009         return residual_eob_run;
01010     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
01011         2, residual_eob_run);
01012     if (residual_eob_run < 0)
01013         return residual_eob_run;
01014 
01015     /* reverse prediction of the C-plane DC coefficients */
01016     if (!(s->avctx->flags & CODEC_FLAG_GRAY))
01017     {
01018         reverse_dc_prediction(s, s->fragment_start[1],
01019             s->fragment_width[1], s->fragment_height[1]);
01020         reverse_dc_prediction(s, s->fragment_start[2],
01021             s->fragment_width[1], s->fragment_height[1]);
01022     }
01023 
01024     /* fetch the AC table indexes */
01025     ac_y_table = get_bits(gb, 4);
01026     ac_c_table = get_bits(gb, 4);
01027 
01028     /* build tables of AC VLC tables */
01029     for (i = 1; i <= 5; i++) {
01030         y_tables[i] = &s->ac_vlc_1[ac_y_table];
01031         c_tables[i] = &s->ac_vlc_1[ac_c_table];
01032     }
01033     for (i = 6; i <= 14; i++) {
01034         y_tables[i] = &s->ac_vlc_2[ac_y_table];
01035         c_tables[i] = &s->ac_vlc_2[ac_c_table];
01036     }
01037     for (i = 15; i <= 27; i++) {
01038         y_tables[i] = &s->ac_vlc_3[ac_y_table];
01039         c_tables[i] = &s->ac_vlc_3[ac_c_table];
01040     }
01041     for (i = 28; i <= 63; i++) {
01042         y_tables[i] = &s->ac_vlc_4[ac_y_table];
01043         c_tables[i] = &s->ac_vlc_4[ac_c_table];
01044     }
01045 
01046     /* decode all AC coefficents */
01047     for (i = 1; i <= 63; i++) {
01048             residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
01049                 0, residual_eob_run);
01050             if (residual_eob_run < 0)
01051                 return residual_eob_run;
01052 
01053             residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
01054                 1, residual_eob_run);
01055             if (residual_eob_run < 0)
01056                 return residual_eob_run;
01057             residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
01058                 2, residual_eob_run);
01059             if (residual_eob_run < 0)
01060                 return residual_eob_run;
01061     }
01062 
01063     return 0;
01064 }
01065 
01066 /*
01067  * This function reverses the DC prediction for each coded fragment in
01068  * the frame. Much of this function is adapted directly from the original
01069  * VP3 source code.
01070  */
01071 #define COMPATIBLE_FRAME(x) \
01072   (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
01073 #define DC_COEFF(u) s->all_fragments[u].dc
01074 
01075 static void reverse_dc_prediction(Vp3DecodeContext *s,
01076                                   int first_fragment,
01077                                   int fragment_width,
01078                                   int fragment_height)
01079 {
01080 
01081 #define PUL 8
01082 #define PU 4
01083 #define PUR 2
01084 #define PL 1
01085 
01086     int x, y;
01087     int i = first_fragment;
01088 
01089     int predicted_dc;
01090 
01091     /* DC values for the left, up-left, up, and up-right fragments */
01092     int vl, vul, vu, vur;
01093 
01094     /* indexes for the left, up-left, up, and up-right fragments */
01095     int l, ul, u, ur;
01096 
01097     /*
01098      * The 6 fields mean:
01099      *   0: up-left multiplier
01100      *   1: up multiplier
01101      *   2: up-right multiplier
01102      *   3: left multiplier
01103      */
01104     static const int predictor_transform[16][4] = {
01105         {  0,  0,  0,  0},
01106         {  0,  0,  0,128},        // PL
01107         {  0,  0,128,  0},        // PUR
01108         {  0,  0, 53, 75},        // PUR|PL
01109         {  0,128,  0,  0},        // PU
01110         {  0, 64,  0, 64},        // PU|PL
01111         {  0,128,  0,  0},        // PU|PUR
01112         {  0,  0, 53, 75},        // PU|PUR|PL
01113         {128,  0,  0,  0},        // PUL
01114         {  0,  0,  0,128},        // PUL|PL
01115         { 64,  0, 64,  0},        // PUL|PUR
01116         {  0,  0, 53, 75},        // PUL|PUR|PL
01117         {  0,128,  0,  0},        // PUL|PU
01118        {-104,116,  0,116},        // PUL|PU|PL
01119         { 24, 80, 24,  0},        // PUL|PU|PUR
01120        {-104,116,  0,116}         // PUL|PU|PUR|PL
01121     };
01122 
01123     /* This table shows which types of blocks can use other blocks for
01124      * prediction. For example, INTRA is the only mode in this table to
01125      * have a frame number of 0. That means INTRA blocks can only predict
01126      * from other INTRA blocks. There are 2 golden frame coding types;
01127      * blocks encoding in these modes can only predict from other blocks
01128      * that were encoded with these 1 of these 2 modes. */
01129     static const unsigned char compatible_frame[9] = {
01130         1,    /* MODE_INTER_NO_MV */
01131         0,    /* MODE_INTRA */
01132         1,    /* MODE_INTER_PLUS_MV */
01133         1,    /* MODE_INTER_LAST_MV */
01134         1,    /* MODE_INTER_PRIOR_MV */
01135         2,    /* MODE_USING_GOLDEN */
01136         2,    /* MODE_GOLDEN_MV */
01137         1,    /* MODE_INTER_FOUR_MV */
01138         3     /* MODE_COPY */
01139     };
01140     int current_frame_type;
01141 
01142     /* there is a last DC predictor for each of the 3 frame types */
01143     short last_dc[3];
01144 
01145     int transform = 0;
01146 
01147     vul = vu = vur = vl = 0;
01148     last_dc[0] = last_dc[1] = last_dc[2] = 0;
01149 
01150     /* for each fragment row... */
01151     for (y = 0; y < fragment_height; y++) {
01152 
01153         /* for each fragment in a row... */
01154         for (x = 0; x < fragment_width; x++, i++) {
01155 
01156             /* reverse prediction if this block was coded */
01157             if (s->all_fragments[i].coding_method != MODE_COPY) {
01158 
01159                 current_frame_type =
01160                     compatible_frame[s->all_fragments[i].coding_method];
01161 
01162                 transform= 0;
01163                 if(x){
01164                     l= i-1;
01165                     vl = DC_COEFF(l);
01166                     if(COMPATIBLE_FRAME(l))
01167                         transform |= PL;
01168                 }
01169                 if(y){
01170                     u= i-fragment_width;
01171                     vu = DC_COEFF(u);
01172                     if(COMPATIBLE_FRAME(u))
01173                         transform |= PU;
01174                     if(x){
01175                         ul= i-fragment_width-1;
01176                         vul = DC_COEFF(ul);
01177                         if(COMPATIBLE_FRAME(ul))
01178                             transform |= PUL;
01179                     }
01180                     if(x + 1 < fragment_width){
01181                         ur= i-fragment_width+1;
01182                         vur = DC_COEFF(ur);
01183                         if(COMPATIBLE_FRAME(ur))
01184                             transform |= PUR;
01185                     }
01186                 }
01187 
01188                 if (transform == 0) {
01189 
01190                     /* if there were no fragments to predict from, use last
01191                      * DC saved */
01192                     predicted_dc = last_dc[current_frame_type];
01193                 } else {
01194 
01195                     /* apply the appropriate predictor transform */
01196                     predicted_dc =
01197                         (predictor_transform[transform][0] * vul) +
01198                         (predictor_transform[transform][1] * vu) +
01199                         (predictor_transform[transform][2] * vur) +
01200                         (predictor_transform[transform][3] * vl);
01201 
01202                     predicted_dc /= 128;
01203 
01204                     /* check for outranging on the [ul u l] and
01205                      * [ul u ur l] predictors */
01206                     if ((transform == 15) || (transform == 13)) {
01207                         if (FFABS(predicted_dc - vu) > 128)
01208                             predicted_dc = vu;
01209                         else if (FFABS(predicted_dc - vl) > 128)
01210                             predicted_dc = vl;
01211                         else if (FFABS(predicted_dc - vul) > 128)
01212                             predicted_dc = vul;
01213                     }
01214                 }
01215 
01216                 /* at long last, apply the predictor */
01217                 DC_COEFF(i) += predicted_dc;
01218                 /* save the DC */
01219                 last_dc[current_frame_type] = DC_COEFF(i);
01220             }
01221         }
01222     }
01223 }
01224 
01225 static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
01226 {
01227     int x, y;
01228     int *bounding_values= s->bounding_values_array+127;
01229 
01230     int width           = s->fragment_width[!!plane];
01231     int height          = s->fragment_height[!!plane];
01232     int fragment        = s->fragment_start        [plane] + ystart * width;
01233     int stride          = s->current_frame.linesize[plane];
01234     uint8_t *plane_data = s->current_frame.data    [plane];
01235     if (!s->flipped_image) stride = -stride;
01236     plane_data += s->data_offset[plane] + 8*ystart*stride;
01237 
01238     for (y = ystart; y < yend; y++) {
01239 
01240         for (x = 0; x < width; x++) {
01241             /* This code basically just deblocks on the edges of coded blocks.
01242              * However, it has to be much more complicated because of the
01243              * braindamaged deblock ordering used in VP3/Theora. Order matters
01244              * because some pixels get filtered twice. */
01245             if( s->all_fragments[fragment].coding_method != MODE_COPY )
01246             {
01247                 /* do not perform left edge filter for left columns frags */
01248                 if (x > 0) {
01249                     s->dsp.vp3_h_loop_filter(
01250                         plane_data + 8*x,
01251                         stride, bounding_values);
01252                 }
01253 
01254                 /* do not perform top edge filter for top row fragments */
01255                 if (y > 0) {
01256                     s->dsp.vp3_v_loop_filter(
01257                         plane_data + 8*x,
01258                         stride, bounding_values);
01259                 }
01260 
01261                 /* do not perform right edge filter for right column
01262                  * fragments or if right fragment neighbor is also coded
01263                  * in this frame (it will be filtered in next iteration) */
01264                 if ((x < width - 1) &&
01265                     (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
01266                     s->dsp.vp3_h_loop_filter(
01267                         plane_data + 8*x + 8,
01268                         stride, bounding_values);
01269                 }
01270 
01271                 /* do not perform bottom edge filter for bottom row
01272                  * fragments or if bottom fragment neighbor is also coded
01273                  * in this frame (it will be filtered in the next row) */
01274                 if ((y < height - 1) &&
01275                     (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
01276                     s->dsp.vp3_v_loop_filter(
01277                         plane_data + 8*x + 8*stride,
01278                         stride, bounding_values);
01279                 }
01280             }
01281 
01282             fragment++;
01283         }
01284         plane_data += 8*stride;
01285     }
01286 }
01287 
01292 static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
01293                               int plane, int inter, DCTELEM block[64])
01294 {
01295     int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
01296     uint8_t *perm = s->scantable.permutated;
01297     int i = 0;
01298 
01299     do {
01300         int token = *s->dct_tokens[plane][i];
01301         switch (token & 3) {
01302         case 0: // EOB
01303             if (--token < 4) // 0-3 are token types, so the EOB run must now be 0
01304                 s->dct_tokens[plane][i]++;
01305             else
01306                 *s->dct_tokens[plane][i] = token & ~3;
01307             goto end;
01308         case 1: // zero run
01309             s->dct_tokens[plane][i]++;
01310             i += (token >> 2) & 0x7f;
01311             if(i>63){
01312                 av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
01313                 return -1;
01314             }
01315             block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
01316             i++;
01317             break;
01318         case 2: // coeff
01319             block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
01320             s->dct_tokens[plane][i++]++;
01321             break;
01322         default: // shouldn't happen
01323             return i;
01324         }
01325     } while (i < 64);
01326     // return value is expected to be a valid level
01327     i--;
01328 end:
01329     // the actual DC+prediction is in the fragment structure
01330     block[0] = frag->dc * s->qmat[0][inter][plane][0];
01331     return i;
01332 }
01333 
01337 static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
01338 {
01339     int h, cy;
01340     int offset[4];
01341 
01342     if (HAVE_PTHREADS && s->avctx->active_thread_type&FF_THREAD_FRAME) {
01343         int y_flipped = s->flipped_image ? s->avctx->height-y : y;
01344 
01345         // At the end of the frame, report INT_MAX instead of the height of the frame.
01346         // This makes the other threads' ff_thread_await_progress() calls cheaper, because
01347         // they don't have to clip their values.
01348         ff_thread_report_progress(&s->current_frame, y_flipped==s->avctx->height ? INT_MAX : y_flipped-1, 0);
01349     }
01350 
01351     if(s->avctx->draw_horiz_band==NULL)
01352         return;
01353 
01354     h= y - s->last_slice_end;
01355     s->last_slice_end= y;
01356     y -= h;
01357 
01358     if (!s->flipped_image) {
01359         y = s->avctx->height - y - h;
01360     }
01361 
01362     cy = y >> s->chroma_y_shift;
01363     offset[0] = s->current_frame.linesize[0]*y;
01364     offset[1] = s->current_frame.linesize[1]*cy;
01365     offset[2] = s->current_frame.linesize[2]*cy;
01366     offset[3] = 0;
01367 
01368     emms_c();
01369     s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
01370 }
01371 
01376 static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y)
01377 {
01378     AVFrame *ref_frame;
01379     int ref_row;
01380     int border = motion_y&1;
01381 
01382     if (fragment->coding_method == MODE_USING_GOLDEN ||
01383         fragment->coding_method == MODE_GOLDEN_MV)
01384         ref_frame = &s->golden_frame;
01385     else
01386         ref_frame = &s->last_frame;
01387 
01388     ref_row = y + (motion_y>>1);
01389     ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
01390 
01391     ff_thread_await_progress(ref_frame, ref_row, 0);
01392 }
01393 
01394 /*
01395  * Perform the final rendering for a particular slice of data.
01396  * The slice number ranges from 0..(c_superblock_height - 1).
01397  */
01398 static void render_slice(Vp3DecodeContext *s, int slice)
01399 {
01400     int x, y, i, j, fragment;
01401     LOCAL_ALIGNED_16(DCTELEM, block, [64]);
01402     int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
01403     int motion_halfpel_index;
01404     uint8_t *motion_source;
01405     int plane, first_pixel;
01406 
01407     if (slice >= s->c_superblock_height)
01408         return;
01409 
01410     for (plane = 0; plane < 3; plane++) {
01411         uint8_t *output_plane = s->current_frame.data    [plane] + s->data_offset[plane];
01412         uint8_t *  last_plane = s->   last_frame.data    [plane] + s->data_offset[plane];
01413         uint8_t *golden_plane = s-> golden_frame.data    [plane] + s->data_offset[plane];
01414         int stride            = s->current_frame.linesize[plane];
01415         int plane_width       = s->width  >> (plane && s->chroma_x_shift);
01416         int plane_height      = s->height >> (plane && s->chroma_y_shift);
01417         int8_t (*motion_val)[2] = s->motion_val[!!plane];
01418 
01419         int sb_x, sb_y        = slice << (!plane && s->chroma_y_shift);
01420         int slice_height      = sb_y + 1 + (!plane && s->chroma_y_shift);
01421         int slice_width       = plane ? s->c_superblock_width : s->y_superblock_width;
01422 
01423         int fragment_width    = s->fragment_width[!!plane];
01424         int fragment_height   = s->fragment_height[!!plane];
01425         int fragment_start    = s->fragment_start[plane];
01426         int do_await          = !plane && HAVE_PTHREADS && (s->avctx->active_thread_type&FF_THREAD_FRAME);
01427 
01428         if (!s->flipped_image) stride = -stride;
01429         if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
01430             continue;
01431 
01432         /* for each superblock row in the slice (both of them)... */
01433         for (; sb_y < slice_height; sb_y++) {
01434 
01435             /* for each superblock in a row... */
01436             for (sb_x = 0; sb_x < slice_width; sb_x++) {
01437 
01438                 /* for each block in a superblock... */
01439                 for (j = 0; j < 16; j++) {
01440                     x = 4*sb_x + hilbert_offset[j][0];
01441                     y = 4*sb_y + hilbert_offset[j][1];
01442                     fragment = y*fragment_width + x;
01443 
01444                     i = fragment_start + fragment;
01445 
01446                     // bounds check
01447                     if (x >= fragment_width || y >= fragment_height)
01448                         continue;
01449 
01450                 first_pixel = 8*y*stride + 8*x;
01451 
01452                 if (do_await && s->all_fragments[i].coding_method != MODE_INTRA)
01453                     await_reference_row(s, &s->all_fragments[i], motion_val[fragment][1], (16*y) >> s->chroma_y_shift);
01454 
01455                 /* transform if this block was coded */
01456                 if (s->all_fragments[i].coding_method != MODE_COPY) {
01457                     if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
01458                         (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
01459                         motion_source= golden_plane;
01460                     else
01461                         motion_source= last_plane;
01462 
01463                     motion_source += first_pixel;
01464                     motion_halfpel_index = 0;
01465 
01466                     /* sort out the motion vector if this fragment is coded
01467                      * using a motion vector method */
01468                     if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
01469                         (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
01470                         int src_x, src_y;
01471                         motion_x = motion_val[fragment][0];
01472                         motion_y = motion_val[fragment][1];
01473 
01474                         src_x= (motion_x>>1) + 8*x;
01475                         src_y= (motion_y>>1) + 8*y;
01476 
01477                         motion_halfpel_index = motion_x & 0x01;
01478                         motion_source += (motion_x >> 1);
01479 
01480                         motion_halfpel_index |= (motion_y & 0x01) << 1;
01481                         motion_source += ((motion_y >> 1) * stride);
01482 
01483                         if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
01484                             uint8_t *temp= s->edge_emu_buffer;
01485                             if(stride<0) temp -= 8*stride;
01486 
01487                             s->dsp.emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
01488                             motion_source= temp;
01489                         }
01490                     }
01491 
01492 
01493                     /* first, take care of copying a block from either the
01494                      * previous or the golden frame */
01495                     if (s->all_fragments[i].coding_method != MODE_INTRA) {
01496                         /* Note, it is possible to implement all MC cases with
01497                            put_no_rnd_pixels_l2 which would look more like the
01498                            VP3 source but this would be slower as
01499                            put_no_rnd_pixels_tab is better optimzed */
01500                         if(motion_halfpel_index != 3){
01501                             s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
01502                                 output_plane + first_pixel,
01503                                 motion_source, stride, 8);
01504                         }else{
01505                             int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
01506                             s->dsp.put_no_rnd_pixels_l2[1](
01507                                 output_plane + first_pixel,
01508                                 motion_source - d,
01509                                 motion_source + stride + 1 + d,
01510                                 stride, 8);
01511                         }
01512                     }
01513 
01514                         s->dsp.clear_block(block);
01515 
01516                     /* invert DCT and place (or add) in final output */
01517 
01518                     if (s->all_fragments[i].coding_method == MODE_INTRA) {
01519                         vp3_dequant(s, s->all_fragments + i, plane, 0, block);
01520                         if(s->avctx->idct_algo!=FF_IDCT_VP3)
01521                             block[0] += 128<<3;
01522                         s->dsp.idct_put(
01523                             output_plane + first_pixel,
01524                             stride,
01525                             block);
01526                     } else {
01527                         if (vp3_dequant(s, s->all_fragments + i, plane, 1, block)) {
01528                         s->dsp.idct_add(
01529                             output_plane + first_pixel,
01530                             stride,
01531                             block);
01532                         } else {
01533                             s->dsp.vp3_idct_dc_add(output_plane + first_pixel, stride, block);
01534                         }
01535                     }
01536                 } else {
01537 
01538                     /* copy directly from the previous frame */
01539                     s->dsp.put_pixels_tab[1][0](
01540                         output_plane + first_pixel,
01541                         last_plane + first_pixel,
01542                         stride, 8);
01543 
01544                 }
01545                 }
01546             }
01547 
01548             // Filter up to the last row in the superblock row
01549             if (!s->skip_loop_filter)
01550                 apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1));
01551         }
01552     }
01553 
01554      /* this looks like a good place for slice dispatch... */
01555      /* algorithm:
01556       *   if (slice == s->macroblock_height - 1)
01557       *     dispatch (both last slice & 2nd-to-last slice);
01558       *   else if (slice > 0)
01559       *     dispatch (slice - 1);
01560       */
01561 
01562     vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) -16, s->height-16));
01563 }
01564 
01566 static av_cold int allocate_tables(AVCodecContext *avctx)
01567 {
01568     Vp3DecodeContext *s = avctx->priv_data;
01569     int y_fragment_count, c_fragment_count;
01570 
01571     y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
01572     c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
01573 
01574     s->superblock_coding = av_malloc(s->superblock_count);
01575     s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
01576     s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int));
01577     s->dct_tokens_base = av_malloc(64*s->fragment_count * sizeof(*s->dct_tokens_base));
01578     s->motion_val[0] = av_malloc(y_fragment_count * sizeof(*s->motion_val[0]));
01579     s->motion_val[1] = av_malloc(c_fragment_count * sizeof(*s->motion_val[1]));
01580 
01581     /* work out the block mapping tables */
01582     s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
01583     s->macroblock_coding = av_malloc(s->macroblock_count + 1);
01584 
01585     if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base ||
01586         !s->coded_fragment_list[0] || !s->superblock_fragments || !s->macroblock_coding ||
01587         !s->motion_val[0] || !s->motion_val[1]) {
01588         vp3_decode_end(avctx);
01589         return -1;
01590     }
01591 
01592     init_block_mapping(s);
01593 
01594     return 0;
01595 }
01596 
01597 /*
01598  * This is the ffmpeg/libavcodec API init function.
01599  */
01600 static av_cold int vp3_decode_init(AVCodecContext *avctx)
01601 {
01602     Vp3DecodeContext *s = avctx->priv_data;
01603     int i, inter, plane;
01604     int c_width;
01605     int c_height;
01606     int y_fragment_count, c_fragment_count;
01607 
01608     if (avctx->codec_tag == MKTAG('V','P','3','0'))
01609         s->version = 0;
01610     else
01611         s->version = 1;
01612 
01613     s->avctx = avctx;
01614     s->width = FFALIGN(avctx->width, 16);
01615     s->height = FFALIGN(avctx->height, 16);
01616     if (avctx->pix_fmt == PIX_FMT_NONE)
01617         avctx->pix_fmt = PIX_FMT_YUV420P;
01618     avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
01619     if(avctx->idct_algo==FF_IDCT_AUTO)
01620         avctx->idct_algo=FF_IDCT_VP3;
01621     dsputil_init(&s->dsp, avctx);
01622 
01623     ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
01624 
01625     /* initialize to an impossible value which will force a recalculation
01626      * in the first frame decode */
01627     for (i = 0; i < 3; i++)
01628         s->qps[i] = -1;
01629 
01630     avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
01631 
01632     s->y_superblock_width = (s->width + 31) / 32;
01633     s->y_superblock_height = (s->height + 31) / 32;
01634     s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
01635 
01636     /* work out the dimensions for the C planes */
01637     c_width = s->width >> s->chroma_x_shift;
01638     c_height = s->height >> s->chroma_y_shift;
01639     s->c_superblock_width = (c_width + 31) / 32;
01640     s->c_superblock_height = (c_height + 31) / 32;
01641     s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
01642 
01643     s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
01644     s->u_superblock_start = s->y_superblock_count;
01645     s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
01646 
01647     s->macroblock_width = (s->width + 15) / 16;
01648     s->macroblock_height = (s->height + 15) / 16;
01649     s->macroblock_count = s->macroblock_width * s->macroblock_height;
01650 
01651     s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
01652     s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
01653     s->fragment_width[1]  = s->fragment_width[0]  >> s->chroma_x_shift;
01654     s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
01655 
01656     /* fragment count covers all 8x8 blocks for all 3 planes */
01657     y_fragment_count     = s->fragment_width[0] * s->fragment_height[0];
01658     c_fragment_count     = s->fragment_width[1] * s->fragment_height[1];
01659     s->fragment_count    = y_fragment_count + 2*c_fragment_count;
01660     s->fragment_start[1] = y_fragment_count;
01661     s->fragment_start[2] = y_fragment_count + c_fragment_count;
01662 
01663     if (!s->theora_tables)
01664     {
01665         for (i = 0; i < 64; i++) {
01666             s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
01667             s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
01668             s->base_matrix[0][i] = vp31_intra_y_dequant[i];
01669             s->base_matrix[1][i] = vp31_intra_c_dequant[i];
01670             s->base_matrix[2][i] = vp31_inter_dequant[i];
01671             s->filter_limit_values[i] = vp31_filter_limit_values[i];
01672         }
01673 
01674         for(inter=0; inter<2; inter++){
01675             for(plane=0; plane<3; plane++){
01676                 s->qr_count[inter][plane]= 1;
01677                 s->qr_size [inter][plane][0]= 63;
01678                 s->qr_base [inter][plane][0]=
01679                 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
01680             }
01681         }
01682 
01683         /* init VLC tables */
01684         for (i = 0; i < 16; i++) {
01685 
01686             /* DC histograms */
01687             init_vlc(&s->dc_vlc[i], 11, 32,
01688                 &dc_bias[i][0][1], 4, 2,
01689                 &dc_bias[i][0][0], 4, 2, 0);
01690 
01691             /* group 1 AC histograms */
01692             init_vlc(&s->ac_vlc_1[i], 11, 32,
01693                 &ac_bias_0[i][0][1], 4, 2,
01694                 &ac_bias_0[i][0][0], 4, 2, 0);
01695 
01696             /* group 2 AC histograms */
01697             init_vlc(&s->ac_vlc_2[i], 11, 32,
01698                 &ac_bias_1[i][0][1], 4, 2,
01699                 &ac_bias_1[i][0][0], 4, 2, 0);
01700 
01701             /* group 3 AC histograms */
01702             init_vlc(&s->ac_vlc_3[i], 11, 32,
01703                 &ac_bias_2[i][0][1], 4, 2,
01704                 &ac_bias_2[i][0][0], 4, 2, 0);
01705 
01706             /* group 4 AC histograms */
01707             init_vlc(&s->ac_vlc_4[i], 11, 32,
01708                 &ac_bias_3[i][0][1], 4, 2,
01709                 &ac_bias_3[i][0][0], 4, 2, 0);
01710         }
01711     } else {
01712 
01713         for (i = 0; i < 16; i++) {
01714             /* DC histograms */
01715             if (init_vlc(&s->dc_vlc[i], 11, 32,
01716                 &s->huffman_table[i][0][1], 8, 4,
01717                 &s->huffman_table[i][0][0], 8, 4, 0) < 0)
01718                 goto vlc_fail;
01719 
01720             /* group 1 AC histograms */
01721             if (init_vlc(&s->ac_vlc_1[i], 11, 32,
01722                 &s->huffman_table[i+16][0][1], 8, 4,
01723                 &s->huffman_table[i+16][0][0], 8, 4, 0) < 0)
01724                 goto vlc_fail;
01725 
01726             /* group 2 AC histograms */
01727             if (init_vlc(&s->ac_vlc_2[i], 11, 32,
01728                 &s->huffman_table[i+16*2][0][1], 8, 4,
01729                 &s->huffman_table[i+16*2][0][0], 8, 4, 0) < 0)
01730                 goto vlc_fail;
01731 
01732             /* group 3 AC histograms */
01733             if (init_vlc(&s->ac_vlc_3[i], 11, 32,
01734                 &s->huffman_table[i+16*3][0][1], 8, 4,
01735                 &s->huffman_table[i+16*3][0][0], 8, 4, 0) < 0)
01736                 goto vlc_fail;
01737 
01738             /* group 4 AC histograms */
01739             if (init_vlc(&s->ac_vlc_4[i], 11, 32,
01740                 &s->huffman_table[i+16*4][0][1], 8, 4,
01741                 &s->huffman_table[i+16*4][0][0], 8, 4, 0) < 0)
01742                 goto vlc_fail;
01743         }
01744     }
01745 
01746     init_vlc(&s->superblock_run_length_vlc, 6, 34,
01747         &superblock_run_length_vlc_table[0][1], 4, 2,
01748         &superblock_run_length_vlc_table[0][0], 4, 2, 0);
01749 
01750     init_vlc(&s->fragment_run_length_vlc, 5, 30,
01751         &fragment_run_length_vlc_table[0][1], 4, 2,
01752         &fragment_run_length_vlc_table[0][0], 4, 2, 0);
01753 
01754     init_vlc(&s->mode_code_vlc, 3, 8,
01755         &mode_code_vlc_table[0][1], 2, 1,
01756         &mode_code_vlc_table[0][0], 2, 1, 0);
01757 
01758     init_vlc(&s->motion_vector_vlc, 6, 63,
01759         &motion_vector_vlc_table[0][1], 2, 1,
01760         &motion_vector_vlc_table[0][0], 2, 1, 0);
01761 
01762     for (i = 0; i < 3; i++) {
01763         s->current_frame.data[i] = NULL;
01764         s->last_frame.data[i] = NULL;
01765         s->golden_frame.data[i] = NULL;
01766     }
01767 
01768     return allocate_tables(avctx);
01769 
01770 vlc_fail:
01771     av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
01772     return -1;
01773 }
01774 
01776 static void update_frames(AVCodecContext *avctx)
01777 {
01778     Vp3DecodeContext *s = avctx->priv_data;
01779 
01780     /* release the last frame, if it is allocated and if it is not the
01781      * golden frame */
01782     if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
01783         ff_thread_release_buffer(avctx, &s->last_frame);
01784 
01785     /* shuffle frames (last = current) */
01786     s->last_frame= s->current_frame;
01787 
01788     if (s->keyframe) {
01789         if (s->golden_frame.data[0])
01790             ff_thread_release_buffer(avctx, &s->golden_frame);
01791         s->golden_frame = s->current_frame;
01792         s->last_frame.type = FF_BUFFER_TYPE_COPY;
01793     }
01794 
01795     s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
01796 }
01797 
01798 static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
01799 {
01800     Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
01801     int qps_changed = 0, i, err;
01802 
01803 #define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field)
01804 
01805     if (!s1->current_frame.data[0]
01806         ||s->width != s1->width
01807         ||s->height!= s1->height) {
01808         if (s != s1)
01809             copy_fields(s, s1, golden_frame, current_frame);
01810         return -1;
01811     }
01812 
01813     if (s != s1) {
01814         // init tables if the first frame hasn't been decoded
01815         if (!s->current_frame.data[0]) {
01816             int y_fragment_count, c_fragment_count;
01817             s->avctx = dst;
01818             err = allocate_tables(dst);
01819             if (err)
01820                 return err;
01821             y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
01822             c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
01823             memcpy(s->motion_val[0], s1->motion_val[0], y_fragment_count * sizeof(*s->motion_val[0]));
01824             memcpy(s->motion_val[1], s1->motion_val[1], c_fragment_count * sizeof(*s->motion_val[1]));
01825         }
01826 
01827         // copy previous frame data
01828         copy_fields(s, s1, golden_frame, dsp);
01829 
01830         // copy qscale data if necessary
01831         for (i = 0; i < 3; i++) {
01832             if (s->qps[i] != s1->qps[1]) {
01833                 qps_changed = 1;
01834                 memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
01835             }
01836         }
01837 
01838         if (s->qps[0] != s1->qps[0])
01839             memcpy(&s->bounding_values_array, &s1->bounding_values_array, sizeof(s->bounding_values_array));
01840 
01841         if (qps_changed)
01842             copy_fields(s, s1, qps, superblock_count);
01843 #undef copy_fields
01844     }
01845 
01846     update_frames(dst);
01847 
01848     return 0;
01849 }
01850 
01851 /*
01852  * This is the ffmpeg/libavcodec API frame decode function.
01853  */
01854 static int vp3_decode_frame(AVCodecContext *avctx,
01855                             void *data, int *data_size,
01856                             AVPacket *avpkt)
01857 {
01858     const uint8_t *buf = avpkt->data;
01859     int buf_size = avpkt->size;
01860     Vp3DecodeContext *s = avctx->priv_data;
01861     GetBitContext gb;
01862     int i;
01863 
01864     init_get_bits(&gb, buf, buf_size * 8);
01865 
01866     if (s->theora && get_bits1(&gb))
01867     {
01868         av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
01869         return -1;
01870     }
01871 
01872     s->keyframe = !get_bits1(&gb);
01873     if (!s->theora)
01874         skip_bits(&gb, 1);
01875     for (i = 0; i < 3; i++)
01876         s->last_qps[i] = s->qps[i];
01877 
01878     s->nqps=0;
01879     do{
01880         s->qps[s->nqps++]= get_bits(&gb, 6);
01881     } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
01882     for (i = s->nqps; i < 3; i++)
01883         s->qps[i] = -1;
01884 
01885     if (s->avctx->debug & FF_DEBUG_PICT_INFO)
01886         av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
01887             s->keyframe?"key":"", avctx->frame_number+1, s->qps[0]);
01888 
01889     s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
01890         avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL : AVDISCARD_NONKEY);
01891 
01892     if (s->qps[0] != s->last_qps[0])
01893         init_loop_filter(s);
01894 
01895     for (i = 0; i < s->nqps; i++)
01896         // reinit all dequantizers if the first one changed, because
01897         // the DC of the first quantizer must be used for all matrices
01898         if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
01899             init_dequantizer(s, i);
01900 
01901     if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
01902         return buf_size;
01903 
01904     s->current_frame.reference = 3;
01905     s->current_frame.pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
01906     if (ff_thread_get_buffer(avctx, &s->current_frame) < 0) {
01907         av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
01908         goto error;
01909     }
01910 
01911     if (!s->edge_emu_buffer)
01912         s->edge_emu_buffer = av_malloc(9*FFABS(s->current_frame.linesize[0]));
01913 
01914     if (s->keyframe) {
01915         if (!s->theora)
01916         {
01917             skip_bits(&gb, 4); /* width code */
01918             skip_bits(&gb, 4); /* height code */
01919             if (s->version)
01920             {
01921                 s->version = get_bits(&gb, 5);
01922                 if (avctx->frame_number == 0)
01923                     av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
01924             }
01925         }
01926         if (s->version || s->theora)
01927         {
01928                 if (get_bits1(&gb))
01929                     av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
01930             skip_bits(&gb, 2); /* reserved? */
01931         }
01932     } else {
01933         if (!s->golden_frame.data[0]) {
01934             av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n");
01935 
01936             s->golden_frame.reference = 3;
01937             s->golden_frame.pict_type = AV_PICTURE_TYPE_I;
01938             if (ff_thread_get_buffer(avctx, &s->golden_frame) < 0) {
01939                 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
01940                 goto error;
01941             }
01942             s->last_frame = s->golden_frame;
01943             s->last_frame.type = FF_BUFFER_TYPE_COPY;
01944             ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
01945         }
01946     }
01947 
01948     memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
01949     ff_thread_finish_setup(avctx);
01950 
01951     if (unpack_superblocks(s, &gb)){
01952         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
01953         goto error;
01954     }
01955     if (unpack_modes(s, &gb)){
01956         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
01957         goto error;
01958     }
01959     if (unpack_vectors(s, &gb)){
01960         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
01961         goto error;
01962     }
01963     if (unpack_block_qpis(s, &gb)){
01964         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
01965         goto error;
01966     }
01967     if (unpack_dct_coeffs(s, &gb)){
01968         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
01969         goto error;
01970     }
01971 
01972     for (i = 0; i < 3; i++) {
01973         int height = s->height >> (i && s->chroma_y_shift);
01974         if (s->flipped_image)
01975             s->data_offset[i] = 0;
01976         else
01977             s->data_offset[i] = (height-1) * s->current_frame.linesize[i];
01978     }
01979 
01980     s->last_slice_end = 0;
01981     for (i = 0; i < s->c_superblock_height; i++)
01982         render_slice(s, i);
01983 
01984     // filter the last row
01985     for (i = 0; i < 3; i++) {
01986         int row = (s->height >> (3+(i && s->chroma_y_shift))) - 1;
01987         apply_loop_filter(s, i, row, row+1);
01988     }
01989     vp3_draw_horiz_band(s, s->avctx->height);
01990 
01991     *data_size=sizeof(AVFrame);
01992     *(AVFrame*)data= s->current_frame;
01993 
01994     if (!HAVE_PTHREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME))
01995         update_frames(avctx);
01996 
01997     return buf_size;
01998 
01999 error:
02000     ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
02001 
02002     if (!HAVE_PTHREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME))
02003         avctx->release_buffer(avctx, &s->current_frame);
02004 
02005     return -1;
02006 }
02007 
02008 /*
02009  * This is the ffmpeg/libavcodec API module cleanup function.
02010  */
02011 static av_cold int vp3_decode_end(AVCodecContext *avctx)
02012 {
02013     Vp3DecodeContext *s = avctx->priv_data;
02014     int i;
02015 
02016     av_free(s->superblock_coding);
02017     av_free(s->all_fragments);
02018     av_free(s->coded_fragment_list[0]);
02019     av_free(s->dct_tokens_base);
02020     av_free(s->superblock_fragments);
02021     av_free(s->macroblock_coding);
02022     av_free(s->motion_val[0]);
02023     av_free(s->motion_val[1]);
02024     av_free(s->edge_emu_buffer);
02025 
02026     if (avctx->is_copy) return 0;
02027 
02028     for (i = 0; i < 16; i++) {
02029         free_vlc(&s->dc_vlc[i]);
02030         free_vlc(&s->ac_vlc_1[i]);
02031         free_vlc(&s->ac_vlc_2[i]);
02032         free_vlc(&s->ac_vlc_3[i]);
02033         free_vlc(&s->ac_vlc_4[i]);
02034     }
02035 
02036     free_vlc(&s->superblock_run_length_vlc);
02037     free_vlc(&s->fragment_run_length_vlc);
02038     free_vlc(&s->mode_code_vlc);
02039     free_vlc(&s->motion_vector_vlc);
02040 
02041     /* release all frames */
02042     vp3_decode_flush(avctx);
02043 
02044     return 0;
02045 }
02046 
02047 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
02048 {
02049     Vp3DecodeContext *s = avctx->priv_data;
02050 
02051     if (get_bits1(gb)) {
02052         int token;
02053         if (s->entries >= 32) { /* overflow */
02054             av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
02055             return -1;
02056         }
02057         token = get_bits(gb, 5);
02058         //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
02059         s->huffman_table[s->hti][token][0] = s->hbits;
02060         s->huffman_table[s->hti][token][1] = s->huff_code_size;
02061         s->entries++;
02062     }
02063     else {
02064         if (s->huff_code_size >= 32) {/* overflow */
02065             av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
02066             return -1;
02067         }
02068         s->huff_code_size++;
02069         s->hbits <<= 1;
02070         if (read_huffman_tree(avctx, gb))
02071             return -1;
02072         s->hbits |= 1;
02073         if (read_huffman_tree(avctx, gb))
02074             return -1;
02075         s->hbits >>= 1;
02076         s->huff_code_size--;
02077     }
02078     return 0;
02079 }
02080 
02081 #if CONFIG_THEORA_DECODER
02082 static const enum PixelFormat theora_pix_fmts[4] = {
02083     PIX_FMT_YUV420P, PIX_FMT_NONE, PIX_FMT_YUV422P, PIX_FMT_YUV444P
02084 };
02085 
02086 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
02087 {
02088     Vp3DecodeContext *s = avctx->priv_data;
02089     int visible_width, visible_height, colorspace;
02090     int offset_x = 0, offset_y = 0;
02091     AVRational fps, aspect;
02092 
02093     s->theora = get_bits_long(gb, 24);
02094     av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
02095 
02096     /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
02097     /* but previous versions have the image flipped relative to vp3 */
02098     if (s->theora < 0x030200)
02099     {
02100         s->flipped_image = 1;
02101         av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
02102     }
02103 
02104     visible_width  = s->width  = get_bits(gb, 16) << 4;
02105     visible_height = s->height = get_bits(gb, 16) << 4;
02106 
02107     if(av_image_check_size(s->width, s->height, 0, avctx)){
02108         av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
02109         s->width= s->height= 0;
02110         return -1;
02111     }
02112 
02113     if (s->theora >= 0x030200) {
02114         visible_width  = get_bits_long(gb, 24);
02115         visible_height = get_bits_long(gb, 24);
02116 
02117         offset_x = get_bits(gb, 8); /* offset x */
02118         offset_y = get_bits(gb, 8); /* offset y, from bottom */
02119     }
02120 
02121     fps.num = get_bits_long(gb, 32);
02122     fps.den = get_bits_long(gb, 32);
02123     if (fps.num && fps.den) {
02124         av_reduce(&avctx->time_base.num, &avctx->time_base.den,
02125                   fps.den, fps.num, 1<<30);
02126     }
02127 
02128     aspect.num = get_bits_long(gb, 24);
02129     aspect.den = get_bits_long(gb, 24);
02130     if (aspect.num && aspect.den) {
02131         av_reduce(&avctx->sample_aspect_ratio.num,
02132                   &avctx->sample_aspect_ratio.den,
02133                   aspect.num, aspect.den, 1<<30);
02134     }
02135 
02136     if (s->theora < 0x030200)
02137         skip_bits(gb, 5); /* keyframe frequency force */
02138     colorspace = get_bits(gb, 8);
02139     skip_bits(gb, 24); /* bitrate */
02140 
02141     skip_bits(gb, 6); /* quality hint */
02142 
02143     if (s->theora >= 0x030200)
02144     {
02145         skip_bits(gb, 5); /* keyframe frequency force */
02146         avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
02147         skip_bits(gb, 3); /* reserved */
02148     }
02149 
02150 //    align_get_bits(gb);
02151 
02152     if (   visible_width  <= s->width  && visible_width  > s->width-16
02153         && visible_height <= s->height && visible_height > s->height-16
02154         && !offset_x && (offset_y == s->height - visible_height))
02155         avcodec_set_dimensions(avctx, visible_width, visible_height);
02156     else
02157         avcodec_set_dimensions(avctx, s->width, s->height);
02158 
02159     if (colorspace == 1) {
02160         avctx->color_primaries = AVCOL_PRI_BT470M;
02161     } else if (colorspace == 2) {
02162         avctx->color_primaries = AVCOL_PRI_BT470BG;
02163     }
02164     if (colorspace == 1 || colorspace == 2) {
02165         avctx->colorspace = AVCOL_SPC_BT470BG;
02166         avctx->color_trc  = AVCOL_TRC_BT709;
02167     }
02168 
02169     return 0;
02170 }
02171 
02172 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
02173 {
02174     Vp3DecodeContext *s = avctx->priv_data;
02175     int i, n, matrices, inter, plane;
02176 
02177     if (s->theora >= 0x030200) {
02178         n = get_bits(gb, 3);
02179         /* loop filter limit values table */
02180         if (n)
02181             for (i = 0; i < 64; i++)
02182                 s->filter_limit_values[i] = get_bits(gb, n);
02183     }
02184 
02185     if (s->theora >= 0x030200)
02186         n = get_bits(gb, 4) + 1;
02187     else
02188         n = 16;
02189     /* quality threshold table */
02190     for (i = 0; i < 64; i++)
02191         s->coded_ac_scale_factor[i] = get_bits(gb, n);
02192 
02193     if (s->theora >= 0x030200)
02194         n = get_bits(gb, 4) + 1;
02195     else
02196         n = 16;
02197     /* dc scale factor table */
02198     for (i = 0; i < 64; i++)
02199         s->coded_dc_scale_factor[i] = get_bits(gb, n);
02200 
02201     if (s->theora >= 0x030200)
02202         matrices = get_bits(gb, 9) + 1;
02203     else
02204         matrices = 3;
02205 
02206     if(matrices > 384){
02207         av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
02208         return -1;
02209     }
02210 
02211     for(n=0; n<matrices; n++){
02212         for (i = 0; i < 64; i++)
02213             s->base_matrix[n][i]= get_bits(gb, 8);
02214     }
02215 
02216     for (inter = 0; inter <= 1; inter++) {
02217         for (plane = 0; plane <= 2; plane++) {
02218             int newqr= 1;
02219             if (inter || plane > 0)
02220                 newqr = get_bits1(gb);
02221             if (!newqr) {
02222                 int qtj, plj;
02223                 if(inter && get_bits1(gb)){
02224                     qtj = 0;
02225                     plj = plane;
02226                 }else{
02227                     qtj= (3*inter + plane - 1) / 3;
02228                     plj= (plane + 2) % 3;
02229                 }
02230                 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
02231                 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
02232                 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
02233             } else {
02234                 int qri= 0;
02235                 int qi = 0;
02236 
02237                 for(;;){
02238                     i= get_bits(gb, av_log2(matrices-1)+1);
02239                     if(i>= matrices){
02240                         av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
02241                         return -1;
02242                     }
02243                     s->qr_base[inter][plane][qri]= i;
02244                     if(qi >= 63)
02245                         break;
02246                     i = get_bits(gb, av_log2(63-qi)+1) + 1;
02247                     s->qr_size[inter][plane][qri++]= i;
02248                     qi += i;
02249                 }
02250 
02251                 if (qi > 63) {
02252                     av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
02253                     return -1;
02254                 }
02255                 s->qr_count[inter][plane]= qri;
02256             }
02257         }
02258     }
02259 
02260     /* Huffman tables */
02261     for (s->hti = 0; s->hti < 80; s->hti++) {
02262         s->entries = 0;
02263         s->huff_code_size = 1;
02264         if (!get_bits1(gb)) {
02265             s->hbits = 0;
02266             if(read_huffman_tree(avctx, gb))
02267                 return -1;
02268             s->hbits = 1;
02269             if(read_huffman_tree(avctx, gb))
02270                 return -1;
02271         }
02272     }
02273 
02274     s->theora_tables = 1;
02275 
02276     return 0;
02277 }
02278 
02279 static av_cold int theora_decode_init(AVCodecContext *avctx)
02280 {
02281     Vp3DecodeContext *s = avctx->priv_data;
02282     GetBitContext gb;
02283     int ptype;
02284     uint8_t *header_start[3];
02285     int header_len[3];
02286     int i;
02287 
02288     s->theora = 1;
02289 
02290     if (!avctx->extradata_size)
02291     {
02292         av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
02293         return -1;
02294     }
02295 
02296     if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
02297                               42, header_start, header_len) < 0) {
02298         av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
02299         return -1;
02300     }
02301 
02302   for(i=0;i<3;i++) {
02303     init_get_bits(&gb, header_start[i], header_len[i] * 8);
02304 
02305     ptype = get_bits(&gb, 8);
02306 
02307      if (!(ptype & 0x80))
02308      {
02309         av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
02310 //        return -1;
02311      }
02312 
02313     // FIXME: Check for this as well.
02314     skip_bits_long(&gb, 6*8); /* "theora" */
02315 
02316     switch(ptype)
02317     {
02318         case 0x80:
02319             theora_decode_header(avctx, &gb);
02320                 break;
02321         case 0x81:
02322 // FIXME: is this needed? it breaks sometimes
02323 //            theora_decode_comments(avctx, gb);
02324             break;
02325         case 0x82:
02326             if (theora_decode_tables(avctx, &gb))
02327                 return -1;
02328             break;
02329         default:
02330             av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
02331             break;
02332     }
02333     if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
02334         av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
02335     if (s->theora < 0x030200)
02336         break;
02337   }
02338 
02339     return vp3_decode_init(avctx);
02340 }
02341 
02342 static void vp3_decode_flush(AVCodecContext *avctx)
02343 {
02344     Vp3DecodeContext *s = avctx->priv_data;
02345 
02346     if (s->golden_frame.data[0]) {
02347         if (s->golden_frame.data[0] == s->last_frame.data[0])
02348             memset(&s->last_frame, 0, sizeof(AVFrame));
02349         if (s->current_frame.data[0] == s->golden_frame.data[0])
02350             memset(&s->current_frame, 0, sizeof(AVFrame));
02351         ff_thread_release_buffer(avctx, &s->golden_frame);
02352     }
02353     if (s->last_frame.data[0]) {
02354         if (s->current_frame.data[0] == s->last_frame.data[0])
02355             memset(&s->current_frame, 0, sizeof(AVFrame));
02356         ff_thread_release_buffer(avctx, &s->last_frame);
02357     }
02358     if (s->current_frame.data[0])
02359         ff_thread_release_buffer(avctx, &s->current_frame);
02360 }
02361 
02362 static int vp3_init_thread_copy(AVCodecContext *avctx)
02363 {
02364     Vp3DecodeContext *s = avctx->priv_data;
02365 
02366     s->superblock_coding      = NULL;
02367     s->all_fragments          = NULL;
02368     s->coded_fragment_list[0] = NULL;
02369     s->dct_tokens_base        = NULL;
02370     s->superblock_fragments   = NULL;
02371     s->macroblock_coding      = NULL;
02372     s->motion_val[0]          = NULL;
02373     s->motion_val[1]          = NULL;
02374     s->edge_emu_buffer        = NULL;
02375 
02376     return 0;
02377 }
02378 
02379 AVCodec ff_theora_decoder = {
02380     "theora",
02381     AVMEDIA_TYPE_VIDEO,
02382     CODEC_ID_THEORA,
02383     sizeof(Vp3DecodeContext),
02384     theora_decode_init,
02385     NULL,
02386     vp3_decode_end,
02387     vp3_decode_frame,
02388     CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
02389     NULL,
02390     .flush = vp3_decode_flush,
02391     .long_name = NULL_IF_CONFIG_SMALL("Theora"),
02392     .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
02393     .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
02394 };
02395 #endif
02396 
02397 AVCodec ff_vp3_decoder = {
02398     "vp3",
02399     AVMEDIA_TYPE_VIDEO,
02400     CODEC_ID_VP3,
02401     sizeof(Vp3DecodeContext),
02402     vp3_decode_init,
02403     NULL,
02404     vp3_decode_end,
02405     vp3_decode_frame,
02406     CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
02407     NULL,
02408     .flush = vp3_decode_flush,
02409     .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
02410     .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
02411     .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
02412 };

Generated on Fri Feb 22 2013 07:24:29 for FFmpeg by  doxygen 1.7.1