ltx-talk — A class for typesetting presentations*

Joseph Wright!
Released 2026-01-06

Contents

I Itx-talk — Overall set up

1 Itx-talk implementation
1.1 Setup o o e
1.2 Additions for expl3
1.3 Extra variants L e
1.4 Scratch space
1.5 Option handling L
1.6 Setting up e
1.7 Math support
1.8 Font selection
1.9 Hyperlinks
1.10 Tagging o o o o e e e e e

IT Itx-talk-color — Color definitions

1 Itx-talk-color implementation
1.1 Existing definitions L oo oo
1.2 Document commands
1.3 Color definition e
1.4 Semantic colors.

IIT Itx-talk-decode — Decoding overlay specs

1 Itx-talk-decode implementation

IV Itx-talk-frame — The structure of frames

*This file describes v0.3.6, last revised 2026-01-06.
TE-mail: joseph@texdev.net

IS IS SIS RN \C R \C RS,

=]

e RN I o> e I =]

16

mailto:joseph@texdev.net

1 Itx-talk-frame implementation
1.1 Slides in frames e
1.2 Counters i i e e e e e
1.3 Frameoptions e
1.4 Tagging for headers oo .
1.5 Wallpaper o
1.6 The frame environment Lo

V ltx-talk-frame — The structure of frames

1 Itx-talk-frame-structure implementation
1.1 Columns
1.2 Floats

1.3 Footnotes o

VI Itx-talk-mode — Modes

1 ltx-talk-mode implementation

VII Itx-talk-overlay — Overlays

1 Itx-talk-overlay implementation
1.1 Utilities e e e e e
1.2 Action commands and environments
1.3 Non-action commands and environments
1.4 Fixed-size areas e e
1.5 Adding overlays to existing commands L.

VIII Itx-talk-required — “Required” definitions

1 Itx-talk-required implementation
1.1 Standard design settings L oL
1.2 List support e

IX Itx-talk-structure — Structural commands

1 Itx-talk-structure implementation
1.1 Frame title
1.2 Sectioning e
1.3 Tableof contents
1.4 Block environments e
1.5 Lists o o e e e
1.6 Theorems, efc.

X ltx-talk-title — Title pages

ii

16
16
19
20
20
21
25

28

28
28
30
32

33

33

34

34
34
34
38
39
41

44

44
44
45

46

46
46
47
49
o1
52
95

57

1 Itx-talk-title implementation

Index

iii

57

61

Part I
Itx-talk — Overall set up

1 Itx-talk implementation

Start the DocStrip guards.
1 (*class)
Identify the internal prefix.
. (e@=talk)

1.1 Set up

Identify the package and give the over all version information.

s \ProvidesExplClass {ltx-talk} {2026-01-06} {0.3.6}
« {A class for typesetting presentations}

Get the right type of message.

s \prop_gput:Nnn \g_msg_module_name_prop { talk } { ltx-talk }
¢ \prop_gput:Nnn \g_msg_module_type_prop { talk } { Class }

Require the latest IATEX structures.

7 \IfFormatAtLeastF{2025-11-01}

s {

9 \msg_new:nnnn { ltx-talk } { kernel-too-old }

10 { The~ltx-talk~class~requires~LaTeX~2025-11-0O1~or~later. }

11 {

12 You~have~tried~to~use~the~1ltx-talk~class~with~a~LaTeX~kernel~release~
13 prior~to~2025-11-01;~the~required~functionality~is~missing.

14 }

15 \msg_fatal:nn { ltx-talk } { kernel-too-old }

6}

17 \NeedsDocumentMetadata

1.2 Additions for expl3

Like \vcoffin_set:Nnn, so should be an easy enough addition.

12 \cs_gset_protected:Npn \vbox_set_to_wd:Nnn #1#2#3
19 {

20 \tex_setbox:D #1 \tex_vbox:D

21 {

2 \tex_hsize:D __box_dim_eval:n {#2}

23 \color_group_begin: #3 \par \color_group_end:
24 }

25 \box_dp:N #1 __box_dim_eval:n {#2}

%}

27 \cs_gset_protected:Npn \vbox_set_to_wd:Nnw #1#2
28 {

29 \cs_set_protected:Npn __box_set_to_wd:

30 { \box_wd:N #1 __box_dim_eval:n {#2} }

31 \tex_setbox:D #1 \tex_vbox:D

32 \c_group_begin_token

1.3 Extra variants

\tex_hsize:D __box_dim_eval:n {#2}
\group_insert_after:N __box_set_to_wd:
\color_group_begin:

}

Some things from xbox that would be useful.

{

\tex_vrule:D

7 \cs_gset_protected:Npn \rule:nnn #1#2#3

height \dim_eval:n {#2} \exp_stop_f:
depth \dim_eval:n {#3} \exp_stop_f:
width \dim_eval:n {#1} \exp_stop_f:

\scan_stop:

\cs_generate_variant:
\cs_generate_variant:
\exp_args_generate:n

¢ \cs_generate_variant:

\cs_generate_variant:
\cs_generate_variant:
\cs_generate_variant:
\cs_generate_variant:
\cs_generate_variant:
\cs_generate_variant:

1.4 Scratch space

__talk_tmp:w For one-off processing.

\1__talk_tmp_box

\1__talk_tmp_tl

\1__talk_aspect_ratio_str
\1__talk_fontsize_dim
\1__talk_frame_title_bool
\1__talk_mode_str

Nn
Nn

\clist_set:Nn { cv }
\hook_gput_code:nnn { nne }

{ nVv }

Nn
Nn
Nn
Nn
Nn
Nn
Nn

\color_select:n { V }
\dim_compare:nNnTF { v }
\dim_compare_p:nNn { vNv }
\dim_max:nn { v }
\str_replace_all:Nnn { NnV }
\text_purify:n { v }
\vbox_to_ht:nn { v }

55 \cs_new_protected:Npn __talk_tmp:w { }

(End of definition for __talk_tmp:w.)

s6 \box_new:N \1__talk_tmp_box

(End of definition for \1__talk_tmp_box.)

s7 \tl_new:N \1__talk_tmp_tl

(End of definition for \1__talk_tmp_t1.)

1.5 Option handling

{

; \keys_define:nn { talk }

aspect-ratio .str_set:N =
\1__talk_aspect_ratio_str ,

font-size .dim_set:N =
\1__talk_fontsize_dim ,

frame-title-arg .bool_set:N =

65 \1__talk_frame_title_bool ,
66 handout .code:n =

67 { \str_set:Nn \1__talk_mode_str { handout } } ,

68 handout .value_forbidden:n = true ,

69 mode .choices:nn =

70 { handout , projector }

71 { \str_set:NV \1__talk_mode_str \1_keys_choice_tl }
72 }

(End of definition for \1__talk_aspect_ratio_str and others.)
Scope for options.

73 \keys_define:nn { talk }

o
75 aspect-ratio .usage:n = load ,
76 font-size .usage:n = load ,
7 frame-title-arg .usage:n = load ,
78 mode .usage:n = load
o}

Initial values.
s \keys_set:nn { talk }
81 {
82 aspect-ratio = 16:9 s
83 font-size = 11pt s
84 frame-title-arg = false s
85 mode = projector
86 }

s7 \ProcessKeyOptions [talk]

1.6 Setting up

Load the font size setup if available, otherwise fall back on scaling.

ss \file_if_exist_input:nF { size \dim_to_decimal:n \1__talk_fontsize_dim .clo }

89 {

9 \file_input:n { sizel0.clo }

01 \RequirePackage { relsize }

0 \hook_gput_code:nne { begindocument } { talk }

93 { \exp_not:N \relsize { \fp_eval:n { \1__talk_fontsize_dim / 10pt } } }
94 }

\c__talk_paper_height_dim As geometry is being used to set the paper size with no previous value, we have to use
\c__talk_paper_width_dim the optional argument rather than waiting to apply \geometry.

o5 \dim_const:Nn \c__talk_paper_height_dim { 100mm }

9% \use:e

97 {

08 \cs_set_protected:Npn \exp_not:N __talk_tmp:w

99 #1 \tl_to_str:n { : } #2 \tl_to_str:n { : } #3 \exp_not:N \g_stop
100 {

101 \dim_const:Nn \exp_not:N \c__talk_paper_width_dim

102 {

103 \exp_not:N \fp_to_dim:n

104 { (#1 / #2) * \exp_not:N \c__talk_paper_height_dim }

105 }

106 }
\exp_not:N __talk_tmp:w \1__talk_aspect_ratio_str

N

108 \tl_to_str:n { : } 100 \exp_not:N \g_stop
109 }

110 \use:e

111 {

112 \exp_not:N \RequirePackage

113 [

114 papersize =

115 "[

116 \dim_use:N \c__talk_paper_width_dim ,
117 \dim_use:N \c__talk_paper_height_dim

118 } N

119 tmargin = 10mm ,
120 bmargin = 8mm ,
121 lmargin = 10mm ,
122 rmargin = 10mm ,
123 headheight = 10mm ,
124 headsep = 2mm ,
125 footskip = 6mm
126]

127 { geometry }

128 }

(End of definition for \c__talk_paper_height_dim and \c__talk_paper_width_dim.)
Turn off justification

120 \raggedright

1.7 Math support

We always require amsmath: this is forced anyway by unicode-math for LuaTgX.

130 \RequirePackage { amsmath }

1.8 Font selection

The aim here is to minimize change from the standard font setup but at the same time
provide a sans-serif default. Since beamer was released, better sans-serif math mode
fonts have become available. For OpenType engines, requiring unicode-math is the most
sensible approach; we also load mathtools as that has to be before unicode-math. The
New Computer Modern font provides a reasonable initial set of glyphs. It comes with
a wrapper package, but that does various other things: if the user wants these, they
can choose to load themselves. For 8-bit engines, switching the text font to be sans-serif
is easy. For math mode, the sansmathfonts package does a good job: here, using the
package rather than adjusting directly is the sensible option.

131 \sys_if_engine_opentype:TF

132 {

133 \RequirePackage { mathtools }

134 \RequirePackage { unicode-math }

135 \setsansfont { NewCMSans10-Regular.otf }
136 \setmathfont { NewCMSansMath-Regular.otf }
137 }

138 {

\thepage

139 \RequirePackage { sansmathfonts }
140 \RequirePackage [nomath] { lmodern }

141 }
122 \cs_set_eq:NN \rmdefault \sfdefault

To ensure that math mode fonts are always initialized, force loading at the start
of the document. This is left as late as possible: just before typesetting starts. This is
needed to set up math dimensions for vertical centering.

123 \AddToHook { begindocument / end } { \check@mathfonts }

1.9 Hyperlinks

We define \thepage here: this is checked for by hyperref so has to come early.
124 \cs_new:Npn \thepage { \@arabic \c@page }

(End of definition for \thepage. This variable is documented on page 77.)
A requirement.

145 \RequirePackage { hyperref }
1s \hypersetup { hidelinks }

1.10 Tagging

We need to extend the standard tagging model to work with slides and so on.

17 \tagpdfsetup

us {

149 role / user-NS = ltx-talk s
150 role / new-tag = frame / Sect s
151 role / new-tag = frametitle / H4
152 }

153 (/class)

Part 11
Itx-talk-color — Color definitions

1 Itx-talk-color implementation

Start the DocStrip guards.
1 (xclass)
Identify the internal prefix.
. (00=talk)

The aim here is to test how well 13color can support the range of color functions that
are needed for a presentation. As such, this is very much experimental, but deliberately
so. In particular, there is an important question about the need for global colors: used
throughout beamer but otherwise not widely encountered. At the same time, there is a
need to work with packages that expect color to be managed in a predictable way: pgf
in particular makes use of xcolor internal as part of color management.
Currently, colors defined using xcolor will be passed on to [3color provided \DocumentMetadata
is active. As that is a requirement in any case for ltx-talk, some of the setup is relatively
easy to do.

1.1 Existing definitions
5 \RequirePackage { xcolor }

\stdcolor Save the document commands.

\stdmathcolor , \NewCommandCopy \stdcolor \color
\stdtextcolor 5 \NewCommandCopy \stdmathcolor \mathcolor
s \NewCommandCopy \stdtextcolor \textcolor

(End of definition for \stdcolor, \stdmathcolor, and \stdtextcolor. These functions are documented
on page 77.)

1.2 Document commands

7 \cs_generate_variant:Nn \color_select:n { e }

¢ \cs_generate_variant:Nn \color_select:nn { ne }
o \cs_generate_variant:Nn \color_math:nn { e }

10 \cs_generate_variant:Nn \color_math:nnn { ne }

\color Add the overlay specification and use I3color.

\mathcolor 11 \RenewDocumentCommand \color { D <> { all } om }
\textcolor 1 {

__talk_if_overlay:nT {#1}

14 {

15 \IfNoValueTF {#2}

16 { \color_select:e {#3} }

17 { \color_select:ne {#2} {#3} }

18 }

19 \ignorespaces

20 }

1 \RenewDocumentCommand \mathcolor { D <> { all } om +m }

22 {

23 __talk_if_overlay:nT {#1}

24 {

25 \IfNoValueTF {#2}

2 { \color_math:en {#3} {#4} }

27 { \color_math:nen {#2} {#3} {#4} }
28 }

0}

30 \RenewDocumentCommand \textcolor { D <> { all } om +m }
ETR |

32 __talk_if_overlay:nT {#1}

33 {

34 \mode_leave_vertical:

35 \group_begin:

36 \IfNoValueTF {#2}

37 { \color_select:e {#3} }

38 { \color_select:ne {#2} {#3} }
39 #4

40 \group_end:

41 }

42 }

(End of definition for \color, \mathcolor, and \textcolor. These functions are documented on page
7))

\pagecolor Here, the definition is different: we directly use the shipout hook.
__talk_pagecolor:n ,; \RenewDocumentCommand \pagecolor { D <> { all } o m }

44 {

a5 __talk_if_overlay:nT {#1}

46 {

47 \IfNoValueTF {#2}

a8 { __talk_pagecolor:n { {#3} } }

49 { __talk_pagecolor:n { [{#2}] {#3} } }
50 }

51 }

s> \cs_new_protected:Npn __talk_pagecolor:n #1

53 {

54 \AddToHook { shipout / background }

55 {

56 \color #1

57 \put (Ocm, -\paperheight)

58 { \rule { \paperwidth } { \paperheight } }
59 T

o0)

(End of definition for \pagecolor and __talk_pagecolor:n. This function is documented on page 77.)

1.3 Color definition

\DeclareColor Provide a single interface here: as the data will be passed to 13color in any case, there is
not too much to do.

61 \NewDocumentCommand \DeclareColor { m o m }
62 {

63 \IfNoValueTF {#2}

64 { \colorlet {#1} {#3} }

65 { \definecolor {#1} {#2} {#3} }
66 }

(End of definition for \DeclareColor. This function is documented on page 77.)

1.4 Semantic colors

Pick up the standard colors from beamer.

67 \DeclareColor { alert } [RGB] { 200, 0, 0 }
6s \DeclareColor { example } { green!50!black }
e \DeclareColor { structure } [rgb] { 0.2 , 0.2, 0.7 }

0 (/class)

\1__talk_decode_overlays_bool

\g__talk_pauses_int
\c@pauses
\thepauses

\1__talk_decode_pure_bool

\1__talk_decode_step_bool

\1__talk_decode_arg_str

\l__talk_decode_overlays clist
\1__talk_decode_overlays_str

\1__talk_decode_action_str

Part II1
Itx-talk-decode — Decoding overlay
specs

1 Itx-talk-decode implementation

Start the DocStrip guards.
1 (xclass)
Identify the internal prefix.
> (0@=talk)
The result from decoding: are we on the current slide. This may well be better handled
by moving to a TF signature: to be explored.
s \bool_new:N \1__talk_decode_overlays_bool

(End of definition for \1__talk_decode_overlays_bool.)

The automatically-incremented value for the relative overlay value.

4 \int_new:N \g__talk_pauses_int
s \cs_new_eq:NN \c@pauses \g__talk_pauses_int
6 \cs_new:Npn \thepauses { \Qarabic \g__talk_pauses_int }

(End of definition for \g__talk_pauses_int, \c@pauses, and \thepauses. These variables are docu-
mented on page 77.)

Tracks whether only mode specifications were given.
7 \bool_new:N \1__talk_decode_pure_bool

(End of definition for \1__talk_decode_pure_bool.)

Tracks whether to step \g__talk_pauses_int.
¢ \bool_new:N \1__talk_decode_step_bool

(End of definition for \1__talk_decode_step_bool.)

For error usage.

o \str_new:N \1__talk_decode_arg_str

(End of definition for \1__talk_decode_arg_str.)

The decoded overlay specification: will have only absolute slide numbers present, poten-
tially along with ranges.

10 \clist_new:N \1__talk_decode_overlays_clist
11 \str_new:N \1__talk_decode_overlays_str

(End of definition for \1__talk_decode_overlays_clist and \1__talk_decode_overlays_str.)

The action which is active, if any.

12 \str_new:N \1__talk_decode_action_str

(End of definition for \1__talk_decode_action_str.)

\1__talk_decode_actions_bool For the actions versions of overlay tracking.
\l__talk decode actions clist |, \bool _new:N \1__talk_decode actions_bool
\1__talk_decode_actions_str 1. \clist_new:N \1__talk_decode_actions_clist
15 \str_new:N \1__talk_decode_actions_str

(End of definition for \1__talk_decode_actions_bool, \1__talk_decode_actions_clist, and \1__-
talk_decode_actions_str.)

__talk_decode_parse:n First a simple check for an entirely blank argument: if that’s the case, there is no addi-
tional overlay to consider. Then deal with any category code issues before looping over

blocks divided by | tokens.

16 \cs_new_protected:Npn __talk_decode_parse:n #1

17 { \exp_args:Ne __talk_decode_parse_auxi:n {#1} }
15 \cs_new_protected:Npn __talk_decode_parse_auxi:n #1

__talk_decode_parse_auxi:
__talk_decode_parse_auxii:

= B B B

__talk_decode_parse:

19 {

20 \str_clear:N \1__talk_decode_action_str

21 \bool_lazy_or:nnTF

2 { \tl_if_blank_p:n {#1} }

23 { \str_if_eq_p:nn {#1} { all } }

% { \bool_set_true:N \1__talk_decode_overlays_bool }
25 {

2% \str_set:Nn \1__talk_decode_arg_str {#1}

27 \bool_set_false:N \1__talk_decode_actions_bool
28 \bool_set_false:N \1__talk_decode_overlays_bool
29 \bool_set_true:N \1__talk_decode_pure_bool

30 \str_clear:N \1__talk_decode_overlays_str

31 \str_clear:N \1__talk_decode_actions_str

32 \exp_args:No __talk_decode_parse_auxii:n { \1__talk_decode_arg_str }
33 T

34 }

35 \cs_new_protected:Npn __talk_decode_parse_auxii:n #1
s { __talk_decode_parse:w #1 | \g_recursion_tail | \g_recursion_stop }

The end-of-loop test here covers the case where the active mode is not mentioned at all
in the specification.

57 \cs_new_protected:Npn __talk_decode_parse:w #1 |

38 {

39 \quark_if_recursion_tail_stop_do:nn {#1}

0 {

a1 \bool_lazy_and:nnT

" { \str_if_empty_p:N \1__talk_decode_overlays_str }
43 { ! \1__talk_decode_pure_bool }

a4 { \bool_set_true:N \1__talk_decode_overlays_bool }
45 }

46 \exp_args:Ne __talk_decode_mode:n

47 { \tl_trim_spaces:n {#1} }

a8 __talk_decode_parse:w

9}

(End of definition for __talk_decode_parse:n and others.)

\c__talk_modes_clist The possible modes: detokenized as that is applied up-front in decoding.

s0 \clist_const:Ne \c__talk_modes_clist

51 {

10

52 \tl_to_str:n { handout } s
53 \tl_to_str:n { projector }
54 }

(End of definition for \c__talk_modes_clist.)
__talk_decode_mode:n Check if the mode is known and current. If we find an action but have no overlay details,

__talk_decode_mode:w they are filled in with a *.

__talk decode mode_aux:n 5 \cs_new_protected:Npe __talk_decode_mode:n #1

56 {

57 \clist_if_in:NnTF \exp_not:N \c__talk_modes_clist {#1}
58 {

59 \exp_not:N \str_if_eq:VnT

60 \exp_not:N \1__talk_mode_str {#1}

61 { \bool_set_true:N \exp_not:N \1__talk_decode_overlays_bool }
62 }

63 {

64 \exp_not:N __talk_decode_mode:w #1 \tl_to_str:n { : : }
65 \exp_not:N \g_stop

66 }

67 }

6s \use:e

69 {

70 \cs_new_protected:Npe \exp_not:N __talk_decode_mode:w
71 #1 \token_to_str:N :

7 #2 \token_to_str:N :

7 #3 \exp_not:N \g_stop

74 }

75 {

76 \exp_not:N \tl_if_blank:nTF {#2}

77 {

78 \exp_not:N __talk_decode_mode:nn

79 { \tl_to_str:n { projector } } {#1}

80 }

81 { \exp_not:N __talk_decode_mode:nn {#1} {#2} }

82 }

53 \cs_new_protected:Npn __talk_decode_mode:nn #1#2

s o{

85 \str_if_eq:VnTF \1__talk_mode_str {#1}

86 {

87 __talk_decode_action:n {#2}

88 \str_if_empty:NT \1__talk_decode_overlays_str

89 { __talk_decode_overlays:nn { overlays } { * } }
90 }

91 {

o \tl_if_blank:nF {#2}

93 { \bool_set_false:N \1__talk_decode_pure_bool }
94 T

95 }

(End of definition for __talk_decode_mode:n, __talk_decode_mode:w, and __talk_decode_mode_-
aux:n.)

__talk_decode_action:n Here, we have two valid possibilities: no action specification at all, or from the known
__talk_decode_action:w list. If we don’t find one of those outcomes, we can issue an error.

11

9 \cs_new_protected:Npe __talk_decode_action:n #1

97 {

08 \exp_not:N __talk_decode_action:w

99 #1 \tl_to_str:n { @ @ } \exp_not:N \g_stop

100 }

101 \use:e

102 {

103 \cs_new_protected:Npn \exp_not:N __talk_decode_action:w
104 #1 \tl_to_str:n { @ } #2 \tl_to_str:n { @ } #3 \exp_not:N \g_stop
105 }

106 {

107 \tl_if_blank:nTF {#2}

108 { __talk_decode_overlays:nn { overlays } {#1} }

109 {

110 \cs_if_exist:cTF { __talk_action_ #1 :N }

111 {

112 \bool_set_false:N \1__talk_decode_pure_bool

113 \str_set:Nn \1__talk_decode_action_str {#1}

114 \tl_if_blank:nF {#2}

115 { __talk_decode_overlays:nn { actions } {#2} }
116 }

117 {

118 \msg_error:nnV { talk } { bad-action-spec }

119 \1__talk_decode_arg_str

120 }

121 }

122 }

(End of definition for __talk_decode_action:n and __talk_decode_action:w.)

__talk_decode_overlays:nn The loop here needs to replace all + and . characters by the current automatic value,
__talk_decode_overlays:nN allowing for any offsets. This step also needs to track whether to increment the automatic
\@_decode_overlay_+:nw value: true if a + is seen, false otherwise.

__talk_decode_overlay_.:nw \cs_new_protected:Npn __talk_decode_overlays:nn #1#2

__talk decode overlay aux:nllN 104 {
__talk decode overlay offset:nlNnN 125 \bool_set_false:N \1__talk_decode_step_bool
__talk decode overlay offset:nlin 126 __talk_decode_overlays:nN {#1} #2 \g_recursion_tail \q_recursion_stop

127 \bool_if:NT \1__talk_decode_step_bool
128 { \int_gincr:N \g__talk_pauses_int }
129 __talk_decode_check:n {#1}
130 }
131 \cs_new_protected:Npn __talk_decode_overlays:nN #1#2
132 {
133 \quark_if_recursion_tail_stop:N #2
134 \cs_if_exist_use:cF { __talk_decode_overlay_ #2 :nw }
135 {
136 \str_put_right:cn { 1__talk_decode_ #1 _str } {#2}
137 __talk_decode_overlays:nN
138 T
139 {#1}
140 }
121 \cs_new_protected:cpn { __talk_decode_overlay_+:nw } #1
142 {
143 \bool_set_true:N \1__talk_decode_step_bool

12

__talk_decode_check:n
__talk_decode_check:nw
__talk decode check single:mn

__talk_decode_check range:nmn

144 __talk_decode_overlay_aux:nNN {#1} 1

145 }

146 \cs_new_protected:cpn { __talk_decode_overlay_.:nw } #1

w7 { __talk_decode_overlay_aux:nNN {#1} 0 }

The look-ahead for an offset to a relative specification. If the end-of-loop is reached,
the value still needs to be inserted: to share auxiliaries, that is done by using the same
function as elsewhere, so the end-of-loop markers are re-inserted. Otherwise, there is a
check to see if the next token is a (.

s \cs_new_protected:Npn __talk_decode_overlay_aux:nNN #1#2#3

149 {

150 \quark_if_recursion_tail_stop_do:Nn #3

151 {

152 __talk_decode_overlay_offset:nNn {#1} #2 { 0 }

153 \q_recursion_tail \q_recursion_stop

154 }

155 \token_if_eq_meaning:NNTF #3 (%)

156 { __talk_decode_overlay_offset:nNnN {#1} #2 { } }

157 { __talk_decode_overlay_offset:nNn {#1} #2 { 0 } #3 }
158 }

For the end of an offset, any valid overlay specification must have a closing), so this time
the end-of-loop case is an error. Otherwise simply collect up tokens until the closing) is
found.

150 \cs_new_protected:Npn __talk_decode_overlay_offset:nNnN #1#2#3#4

160 {

161 \quark_if_recursion_tail_stop_do:Nn #4

162 {

163 \msg_error:nnV { talk } { bad-action-spec }

164 \1__talk_decode_arg_str

165 } % (C

166 \token_if_eq_meaning:NNTF #4)

167 { __talk_decode_overlay_offset:nNn {#1} #2 {#3} }

168 { __talk_decode_overlay_offset:nNnN {#1} #2 {#3#4} }
169 }

Overlay values can never be negative: this is enforced here.
170 \cs_new_protected:Npn __talk_decode_overlay_offset:nNn #1#2#3

171 {

172 \str_put_right:ce { 1__talk_decode_ #1 _str }

173 { \int_max:nn { 0 } { #3 + \g__talk_pauses_int + #2 } }
174 __talk_decode_overlays:nN {#1}

175 }

(End of definition for __talk_decode_overlays:nn and others. This function is documented on page
?7.)

At this stage we have a fully “written out” overlay specification, and need to work out if
the current slide is included. We need to look at each entry in the comma-separated list
to sort this out. First we filter out the case of a *, then it’s a question of working out
whether each entry is a single number or a range, and if the latter, whether it’s open at
either the start or the end.

176 \cs_new_protected:Npn __talk_decode_check:n #1

177 {

178 \clist_set:cv { 1__talk_decode_ #1 _clist } { 1__talk_decode_ #1 _str }

13

179 \clist_if_in:cnTF { 1__talk_decode_ #1 _clist } { * }
180 { \bool_set_true:c { 1__talk_decode_ #1 _bool } }

181 {

182 \clist_map_inline:cn { 1__talk_decode_ #1 _clist }

183 { __talk_decode_check:nw {#1} O ##1 - - \g_stop }

184 }

185 }

If #4 is empty, both of the “filler” - tokens were consumed: we have a single value.

Otherwise there is a range: the setup above ensures that there will be a starting value in
all cases due to the leading 0, but there may not be an end one.

156 \cs_new_protected:Npn __talk_decode_check:nw #1#2 - #3 - #4 \q_stop

187 {

188 \tl_if_empty:nTF {#4}

189 { __talk_decode_check_single:nn {#1} {#2} }

190 {

101 \tl_if_blank:nTF {#3}

192 { __talk_decode_check_range:nnn {#1} {#2} { \c_max_int } }
193 { __talk_decode_check_range:nnn {#1} {#2} {#3} }
194 }

195 }

16 \cs_set_protected:Npn __talk_decode_check_single:nn #1#2
197 {

198 \int_compare:nNnTF \g__talk_slide_int = {#2}

199 {

200 \bool_set_true:c { 1__talk_decode_ #1 _bool }

201 \clist_map_break:

202 }

203 {

204 \int_compare:nNnT {#2} > \g__talk_slide_int

205 { \bool_gset_true:N \g__talk_slide_continue_bool }
206 }

207 }

TODO: In the following we might want to add a check whether the range was given with
#2 being smaller than #3, to be decided upon.

205 \cs_set_protected:Npn __talk_decode_check_range:nnn #1#2#3
209 {

210 \int_compare:nNnF \g__talk_slide_int > {#3}

211 {

212 \int_compare:nNnTF \g__talk_slide_int < {#2}

213 { \bool_gset_true:N \g__talk_slide_continue_bool }
214 {

215 \bool_set_true:c { 1__talk_decode_ #1 _bool }

216 \bool_lazy_and:nnT

217 { \int_compare_p:nNn \g__talk_slide_int < {#3} }
218 { \int_compare_p:nNn {#3} < \c_max_int }

219 { \bool_gset_true:N \g__talk_slide_continue_bool }
220 \clist_map_break:

221 3

222 }

223 ¥

(End of definition for __talk_decode_check:n and others.)

14

224 \msg_new:nnnn { talk } { bad-action-spec }
25 { Bad~overlay~specification~"#1". }

226 {

227 The~overlay~specification~given~doesn't~follow~the~pattern~described~in~
228 the~1tx-talk~manual:~it~has~been~ignored.

229 }

230 (/class)

15

\g__talk_slide_continue_bool

\1__talk_slide_box

\g__talk_slide_int
\c@slide
\theslide

__talk_slide:nn
__talk_slide_aux:n

Part IV
Itx-talk-frame — The structure of
frames

1 Itx-talk-frame implementation

Start the DocStrip guards.
1 (xclass)
Identify the internal prefix.
. (e@=talk)

1.1 Slides in frames

Currently, each slide in a frame will produce a separate page in the output (unless the
slide is suppressed entirely). Material is then hidden on some pages by using opacity. An
alternative approach would be to use Optional Content Groups to have a similar effect on
one page per frame. However, whilst that would be relatively clear for appear/disappear
effects, it would be much less straight-forward for partial transparency, etc., plus would
depend more heavily on viewer support. At a future stage we may wish to revisit this.

Tracks whether the frame continues after the current slide.

5 \bool_new:N \g__talk_slide_continue_bool

(End of definition for \g__talk_slide_continue_bool.)

4+ \box_new:N \1__talk_slide_box

(End of definition for \1__talk_slide_box.)

The slide number inside the current frame: needed to know which overlays are active.
We also provide IXTEX counter-style access.

s \int_new:N \g__talk_slide_int

6 \cs_new_eq:NN \c@slide \g__talk_slide_int

7 \cs_new:Npn \theslide { \@arabic \c@slide }

(End of definition for \g__talk_slide_int, \c@slide, and \theslide. These variables are documented
on page 77.)
Required to know which is the last slide in a frame for tagging.

¢ \property_new:nnnn { slides } { now } { 1 } { \int_use:N \g__talk_slide_int }

Each slide is parsed inside simple set up, the only complexity being if we are handling
fragile frames. There, all \obeyedline in the grabbed tokens need to be turned back into
~~M before rescanning: this ensures that any verbatim grabbing in the frame still works.
The strange business with setting the continuation boolean is needed as otherwise we get
an infinite loop if there is an overlay specification for the frame itself. Tagging should
not of itself force slide continuation, so the global boolean is reset for the tagged slide.

9 \cs_new_protected:Npn __talk_slide:nn #1#2
10 {

16

39

40

41

42

43

44

}

\group_begin:

\tl_

{

}

\property_ref:ee { frame

set:Ne \1__talk_tmp_tl

{ slides }

\str_if_eq:VnTF \1__talk_frame_tagging str { n }
{ \str_set:NV \1__talk_frame_tagging str \1__talk_tmp_tl }

{

}

\str_replace_all:NnV \1__talk_frame_tagging_str { ,n }

\1__talk_tmp_tl

\str_replace_all:NnV \1__talk_frame_tagging str { ,~n }

\1__talk_tmp_tl

\int_gzero:N \g__talk_slide_int
\RenewCommandCopy \frame __talk_latexe_frame:n
\bool_do_while:Nn \g__talk_slide_continue_bool

{

}

\property_record:ee { frame .

{

\int_gincr:N \g__talk_slide_int
\bool_gset_false:N \g__talk_slide_continue_bool
__talk_if_overlay:nT {#1}

{
__talk_slide_begin:
__talk_if_overlay:VTF \1__talk_frame_tagging_str
{
\bool_gset_false:N \g__talk_slide_continue_bool
__talk_frame_tag:n
}
{
\bool_gset_false:N \g__talk_slide_continue_bool
__talk_frame_notag:n
}
{
\bool_if:NTF \1__talk_frame_verb_bool
{ __talk_slide_aux:n }
{ \use:n }
{#2}
}
__talk_slide_end:
}

slides }

\group_end:

\cs_new_protected:Npn __talk_slide_aux:n #1

{

\group_begin:

\cs_set:Npn \obeyedline { ~~J }
\use:e
{
\group_end:

}

\tl_retokenize:n {#1}

17

\int_use:N \g__talk_frame_int }

\int_use:N \g__talk_frame_int }

65 }

(End of definition for __talk_slide:nn and __talk_slide_aux:n.)
The very last frame will not be recorded by the above, so we have to add to the hook
at the very end of the run.
6 \AddToHook { enddocument / afterlastpage }
o o
68 \property_record:ee { frame . \int_use:N \g__talk_frame_int }
60 { slides }
0}

\g__talk_frame_struct_int The tagging structure number for the slide: needed by the content placed outside of the
current box (for example the frame title).

7 \int_new:N \g__talk_frame_struct_int

(End of definition for \g__talk_frame_struct_int.)

__talk_slide_begin:

__talk_slide_end: 7 \cs_new_protected:Npn __talk_slide_begin:
73 {
74 \int_gzero:N \g__talk_pauses_int
75 \tl_gclear:N \g__talk_frame_title_tl
76 \tl_gclear:N \g__talk_frame_subtitle_tl
7 __talk_cnt_save:
78 \vbox_set:Nw \1__talk_slide_box
79 \tl_gclear:N \g__talk_onslide_tl
80 }
51 \cs_new_protected:Npn __talk_slide_end:
82 {
83 \tl_use:N \g__talk_onslide_t1l
84 \vbox_set_end:
85 \bool_if:NT \g__talk_slide_continue_bool
86 { __talk_cnt_restore: }
87 \vbox_to_ht:nn { \textheight }
88 {
89 \use:c { __talk_slide_align_ \1__talk_frame_alignment_tl :n }
% { \vbox_unpack_drop:N \1__talk_slide_box }
o1 T
02 \clearpage
93 }

(End of definition for __talk_slide_begin: and __talk_slide_end:.)

__talk_slide_align_bottom:n A pretty standard abstraction: we make sure there are always two skips.

__talk_slide_align_center:n \cs_new_protected:Npn __talk_slide_align_bottom:n #1
__talk slide align stretch:n 95 {

__talk_slide_align_top:n \skip_vertical:n { Opt~plus~1fil }
97 #1
98 \skip_vertical:n { Opt }
99 }
1o \cs_new_protected:Npn __talk_slide_align_center:n #1
101 {
102 \skip_vertical:n { Opt~plus~0.5fil }
103 #1

18

\1__talk_cnt_reset_seq

__talk_cnt_save:
__talk_cnt_restore:

104 \skip_vertical:n { Opt~plus~0.5fil }

105 }

w06 \cs_new_protected:Npn __talk_slide_align_stretch:n #1
107 {

108 \skip_vertical:n { Opt }

100 #1

110 \skip_vertical:n { Opt }

111 }

112 \cs_new_protected:Npn __talk_slide_align_top:n #1
113 {

114 \skip_vertical:n { Opt }

115 #1

116 \skip_vertical:n { Opt~plus~1fil }

117 }

(End of definition for __talk_slide_align_bottom:n and others.)

1.2 Counters

As \stepcounter, etc., will increment at each overlay, there is a need to save and reset.
The list will be finalized at the end of the preamble, so the data storage is created at that
point. The starting point is counters created before the class is loaded (other than those
for lists, which reset “naturally”). Other cases are handled by adding to \newcounter.
15 \seq_new:N \1__talk_cnt_reset_seq

119 \seq_set_from_clist:Nn \1__talk_cnt_reset_seq

120 {

121 equation s

122 footnote ,

123 mpfootnote s

124 parentequation

125 }

126 \seq_map_inline:Nn \1__talk_cnt_reset_seq
127 {

128 \int_new:c { g__talk_saved_ #1 _int }
129 \int_gset_eq:cc { g__talk_saved_ #1 _int } { c@ #1 }
130 }

(End of definition for \1__talk_cnt_reset_seq.)

A simple save-and-restore pair.

131 \cs_new_protected:Npn __talk_cnt_save:

132 {

133 \seq_map_inline:Nn \1__talk_cnt_reset_seq

134 { \int_gset_eq:cc { g__talk_saved_ ##1 _int } { c@ ##1 } }
135 }

136 \cs_new_protected:Npn __talk_cnt_restore:

137 {

138 \seq_map_inline:Nn \1__talk_cnt_reset_seq

139 { \int_gset_eq:cc { c@ ##1 } { g__talk_saved_ ##1 _int } }
140 }

(End of definition for __talk_cnt_save: and __talk_cnt_restore:.)

19

\@definecounter Track all counters for resetting.

\std@definecounter ., \cs_new_eq:NN \std@definecounter \@definecounter
142 \cs_gset_protected:Npn \@definecounter #1

143 {

144 \std@definecounter {#1}

145 \int_new:c { g__talk_saved_ #1 _int }

146 \seq_gput_right:Nn \1__talk_cnt_reset_seq {#1}
@}

(End of definition for \@definecounter and \std@definecounter. These functions are documented on
page 77.)
1.3 Frame options

\1__talk_frame_alignment_tl
1us \tl_new:N \1__talk_frame_alignment_tl

(End of definition for \1__talk_frame_alignment_t1.)

\1__talk_action_spec_str
\1__talk_frame_tagging str \keys_define:nn { talk / frame }

150 {

151 action-spec .str_set:N

152 = \1__talk_action_spec_str ,

153 tag-slides .str_set:N

154 = \1__talk_frame_tagging_str ,

155 vertical-alignment .choices:nn =

156 { bottom , center , stretch , top }
157 {

158 \tl_set_eq:NN \1__talk_frame_alignment_tl
150 \1_keys_value_tl

160 }

161 }

12 \keys_set:nn { talk / frame }

163 {

164 action-spec = s

165 tag-slides =n s

166 vertical-alignment = center

167 }

(End of definition for \1__talk_action_spec_str and \1__talk_frame_tagging_str.)

1.4 Tagging for headers

__talk_header_tag_begin:n Generalized control for inserting material into the header area (which is otherwise outside
__talk_header_tag_begin:e of tagging)
__talk_header_tag_end: 5 \cs_new_protected:Npn __talk_header_tag_begin:n #1

169 {

170 \tag_resume:n { header }
171 \tag_mc_end:

172 \tag_struct_begin:n {#1}
173 \tag_mc_begin:n { }

174 ¥

175 \cs_generate_variant:Nn __talk_header_tag_begin:n { e }

20

176 \cs_new_protected:Npn __talk_header_tag_end:

177 {

178 \tag_mc_end:

179 \tag_struct_end:

180 \tag_mc_begin:n { artifact }
181 \tag_suspend:n { header }

182 ¥

(End of definition for __talk_header_tag_begin:n and __talk_header_tag_end:.)

1.5 Wallpaper

\1__talk_footelem_left_skip

\1__talk_footelem_right_skip . \NewTemplateType { footer-element } { 1 }
\1__talk_footelem_color_tl s \DeclareTemplateInterface { footer-element } { talk } { 1 }
\1__talk_footelem_font_tl 1 {

186 color : tokenlist ,

187 font : tokenlist = ,

188 left-hspace : length = Oem ,

189 right-hspace : length = Oem

190 }

101 \DeclareTemplateCode { footer-element } { talk } { 1 }
192 {

193 color = \1__talk_footelem_color_tl ,

194 font \1__talk_footelem_font_tl ,
195 left-hspace = \1__talk_footelem_left_skip ,

196 right-hspace = \1__talk_footelem_right_skip

197 }

198 {

199 \tl_if_empty:nF {#1}

200 {

201 \hspace { \1__talk_footelem_left_skip }

202 \group_begin:

203 \tl_if_empty:NF \1__talk_footelem_color_tl
204 { \color_select:V \1__talk_footelem_color_tl }
205 \1__talk_footelem_font_tl

206 #1

207 \gr oup_end :

208 \hspace { \1__talk_footelem_right_skip }

209 }

210 }

date } { talk } { }
author } { talk } {
title } { talk } {2}
subtitle } { talk } { }
institute } { talk } { }
framenumber } { talk } {
totalframes } { talk } {

211 \DeclareInstance { footer-element
212 \DeclareInstance { footer-element }
213 \DeclareInstance { footer-element
214 \DeclareInstance { footer-element
215 \DeclareInstance { footer-element
216 \DeclareInstance { footer-element
{

217 \DeclareInstance footer-element

s e e
N

}
}
(End of definition for \1__talk_footelem_left_skip and others.)

\1__talk_header_bg_tl Templates for the header area. The background always covers the full width, but the text
\1__talk_header_fg_tl area may be narrower. The setup here aims to avoid repeated kerns but also dealing with
\1__talk_header_font_tl
\1__talk_header_ht_dim
\1__talk_header_left_skip
\1__talk header frametitle bool 21
\1__talk_header_right_skip

complex conditionals, hence we always move to the edge of the paper first then adjust as
required.

215 \NewTemplateType { header } { 0 }
219 \DeclareTemplateInterface { header } { talk } { 0 }

220 {

221 background-color : tokenlist,

222 color : tokenlist = structure ,

223 font : tokenlist = \normalfont ,
224 height : length = \Gm@tmargin + \headsep ,
225 left-hspace : skip = \Gm@lmargin ,

226 print-frame-title : boolean = true ,

227 right-hspace : skip = \Gm@rmargin

228 }

229 \DeclareTemplateCode { header } { talk } { 0 }

230 {

231 background-color = \1__talk_header_bg_tl ,

232 color = \1__talk_header_fg_tl ,

233 font = \1__talk_header_font_tl ,
234 height = \1__talk_header_ht_dim ,

235 left-hspace = \1__talk_header_left_skip ,
236 print-frame-title = \1__talk_header_frametitle_bool ,
237 right-hspace = \1__talk_header_right_skip
238 }

239 {

240 \noindent

241 __talk_wallpaper_hrule:Nnn

242 \1__talk_header_bg_tl

243 { \1__talk_header_ht_dim - \headsep }

244 { \headsep }

245 \skip_horizontal:n { \1__talk_header_left_skip }
246 \group_begin:

247 \tl_if_empty:NF \1__talk_header_fg_tl

248 { \color_select:V \1__talk_header_fg_tl }
249 \1__talk_header_font_tl

250 \bool_if:NT \1__talk_header_frametitle_bool
251 {

252 \ExpandArgs { nnV }

253 \UseInstance { frametitle } { header }
254 \g__talk_frame_title_tl

255 }

256 \group_end:

257 }

2ss \DeclareInstance { header } { std } { talk } { }
259 \AddToHook { begindocument }

260 {

261 \DeclarelInstanceCopy { header } { wallpaper } { std }
262 \EditInstance { header } { wallpaper }

263 { print-frame-title = false }

264 }

(End of definition for \1__talk_header_bg_tl and others.)

\1__talk_footer_bg_tl Templates for the footer area. Again the margins are handled in stages: here we do have
\1__talk_footer_fg_tl a box for the content so the right skip is used, and we avoid an overfull box by including
\1__talk_footer_font_tl
\1__talk_footer_order_clist
\1__talk_footer_sep_tl 22
\1__talk_footer_left_skip
\1__talk_footer_right_skip

consideration of the right margin of the page layout.

s \NewTemplateType { footer } { 0 }
26 \DeclareTemplateInterface { footer } { talk } { 0 }

267 {

268 background-color : tokenlist ,

269 color : tokenlist ,

270 element-order : commalist ,

271 font : tokenlist = \tiny ,

272 left-hspace : length = \Gm@lmargin ,

273 right-hspace : length = \Gm@rmargin ,

274 separator : tokenlist = \hfil

275 }

276 \DeclareTemplateCode { footer } { talk } { 0 }

277 {

278 background-color = \1__talk_footer_bg_tl ,

279 color = \1__talk_footer_fg_tl ,

280 element-order = \1__talk_footer_order_clist ,

281 separator = \1__talk_footer_sep_tl ,

282 font = \1__talk_footer_font_tl ,

283 left-hspace = \1__talk_footer_left_skip ,

284 right-hspace = \1__talk_footer_right_skip

285}

6 {

287 \noindent

288 __talk_wallpaper_hrule:Nnn

289 \1__talk_footer_bg_tl

290 { \foOtSkip 3

201 { \Gm@bmargin - \footskip }

202 \skip_horizontal:n { \1__talk_footer_left_skip }

203 \vbox_set_to_wd:Nnn \1__talk_tmp_box

294 {

295 \paperwidth

206 - \1__talk_footer_left_skip

207 - \1__talk_footer_right_skip

298 }

299 {

300 \tl_if_empty:NF \1__talk_footer_fg_tl

301 { \color_select:V \1__talk_footer_fg_tl }

302 \1__talk_footer_font_tl

303 \clist_pop:NNT \1__talk_footer_order_clist \1__talk_tmp_tl
304 {

305 \ExpandArgs { nVv } \UseInstance { footer-element } \1__talk_tmp_tl
306 { @ __talk_metadata_name:n { \1__talk_tmp_tl } }
307 \clist_map_inline:Nn \1__talk_footer_order_clist
308 {

300 \tl_if_empty:cF { @ __talk_metadata_name:n { ##1 } }
310 {

311 \1__talk_footer_sep_tl

312 \ExpandArgs { nnv }

313 \UselInstance { footer-element } {##1}
314 { @ __talk_metadata_name:n { ##1 } }

316 }
317 }

23

318 \hfil

319 }

320 \box_use_drop:N \1__talk_tmp_box

321 \skip_horizontal:n { \1__talk_footer_right_skip - \Gm@rmargin }
322 }

323 \DeclareInstance { footer } { std } { talk } { }
524 \AddToHook { begindocument }

325 {

326 \DeclareInstanceCopy { footer } { wallpaper } { std }
327 \EditInstance { footer } { wallpaper }

328 { element-order = }

329 }

(End of definition for \1__talk_footer_bg_tl and others.)

__talk_metadata_name:n A simple auxiliary to shorten metadata names if appropriate. Full expansion is applied
as this avoids any issue with stored names.

;30 \cs_new:Npn __talk_metadata_name:n #1

331 {

332 \tl_if_exist:cTF { @ short #1 }
333 { short #1 }

334 {#1}

335 }

(End of definition for __talk_metadata_name:n.)

__talk_wallpaper_hrule:Nnn A simple abstraction for the top and bottom rules on the page.
33 \cs_new_protected:Npn __talk_wallpaper_hrule:Nnn #1#2#3

337 {

338 \skip_horizontal:n { -\Gm@lmargin }

339 \tl_if_empty:NF #1

340 {

381 \group_begin:

342 \color_select:V #1

343 \rule:nnn { \paperwidth } {#2} {#3}
344 \skip_horizontal:n { -\paperwidth }
345 \group_end:

346 }

347 }

(End of definition for __talk_wallpaper_hrule:Nnn.)

\ps@plain Install a standard header and footer template, and redefine the plain one as this will be
\ps@vallpaper used for frames without “wallpaper” which still need core links, etc. We also provide a
\ps@talk version that only shows the visual elements: this is deliberately using the same settings

as the main templates.

25 \cs_set_nopar:Npn \ps@plain

349 {

350 \cs_set_nopar:Npn \@oddhead

351 {

352 \hfil

353 T

354 \cs_set_nopar:Npn \Qoddfoot { }

355 \cs_set_eq:NN \@evenhead \Q@oddhead

24

356 \cs_set_eq:NN \@evenfoot \Qoddfoot

357 }

355 \cs_set_nopar:Npn \ps@wallpaper

359 {

360 \cs_set_nopar:Npn \@oddhead

361 {

362 \UseInstance { header } { wallpaper }
363 \hfil

364 }

365 \cs_set_nopar:Npn \@oddfoot

366 {

367 \UseInstance { footer } { wallpaper }
368 \hfil

369 }

370 \cs_set_eq:NN \@evenhead \@oddhead

371 \cs_set_eq:NN \@evenfoot \Qoddfoot

372 }

373 \cs_new_nopar:Npn \ps@talk

374 {

375 \cs_set_nopar:Npn \@oddhead

376 {

377 \UseInstance { header } { std }

378 \hfil

379 }

380 \cs_set_nopar:Npn \@oddfoot { \UseInstance { footer } { std } }
381 \cs_set_eq:NN \@evenhead \@oddhead

382 \cs_set_eq:NN \@evenfoot \Qoddfoot

383 }

s \pagestyle { talk }

(End of definition for \ps@plain, \ps@wallpaper, and \ps@talk. These functions are documented on
page 77.)

1.6 The frame environment
\1__talk_frame_bool To track whether we are inside a frame or not.
35 \bool_new:N \1__talk_frame_bool

(End of definition for \1__talk_frame_bool.)

\g__talk_frame_tag bool To track when a frame is being tagged: mainly needed for the header (and as a result
global).

356 \bool_new:N \g__talk_frame_tag_bool
(End of definition for \g__talk_frame_tag_bool.)
\1__talk_frame_verb_bool Indicates that material was collected verbatim (and thus needs rescanning).

337 \bool_new:N \1__talk_frame_verb_bool

(End of definition for \1__talk_frame_verb_bool.)

\g__talk_frame_int The overall frame number, including I¥TEX counter-like access.
\c@frame ; \int_new:N \g__talk_frame_int
\theframe s \cs_new_eq:NN \c@frame \g__talk_frame_int

\@framenumber 30 \cs_new:Npn \theframe { \Qarabic \c@frame }
301 \cs_new:Npn \@framenumber { \arabic { frame } }

25

(End of definition for \g__talk_frame_int and others. These variables are documented on page 77?.)

\@totalframes The total frames can be handled using the kernel properties.

302 \property_new:nnnn { totalframes } { shipout } { -1 }

303 { \int_use:N \g__talk_frame_int }

;00 \AddToHook { enddocument / afterlastpage }

s0s { \property_record:nn { lastpage } { totalframes } }

306 \cs_new:Npn \Qtotalframes { \property_ref:nn { lastpage } { totalframes } }

(End of definition for \@totalframes. This variable is documented on page ?77.)

__talk_latexe_frame:n As we will need to re-define \frame but have it available inside frames, a copy is made
here.

307 \NewCommandCopy __talk_latexe_frame:n \frame

(End of definition for __talk_latexe_frame:n.)

__talk_frame_process:nn Here, the frame content is received as the argument.

30 \cs_new_protected:Npn __talk_frame_process:nn #1#2

399 {

400 \int_gincr:N \g__talk_frame_int

401 \bool_set_true:N \1__talk_frame_bool
402 __talk_slide:nn {#1} {#2}

403 }

(End of definition for __talk_frame_process:nn.)

__talk_frame_tag:n Wraps some content in tagging for a frame: we may have multiple of these in one logical
frame, but that is non-standard.

204 \cs_new_protected:Npn __talk_frame_tag:n #1

405 {

406 \tag_struct_begin:n { tag = frame }

407 \int_gset:Nn \g__talk_frame_struct_int { \tag_get:n { struct_num } }
408 \bool_gset_true:N \g__talk_frame_tag_bool

409 #1

410 \tag_struct_end:

411 }

(End of definition for __talk_frame_tag:n.)

__talk_frame _notag:n The alternative: turn off tagging and suppress the function that would tag the frame

title.

212 \cs_new_protected:Npn __talk_frame_notag:n #1
413 {

414 \tag_mc_begin:n { artifact }

415 \tag_suspend:n { frame }

416 \bool_gset_false:N \g__talk_frame_tag_bool
217 #1

418 \par

419 \tag_resume:n { frame }

420 \tag_mc_end:

421 }

(End of definition for __talk_frame_notag:n.)

26

frame The definition for the frame and frame* environments: the exact interface at both the
framex document and code levels is still open.

122 \bool_if:NTF \1__talk_frame_title_bool

423 {

424 \RenewDocumentEnvironment { frame }

425 {D<>{all } = { action-spec } 0 { } +m +b }
426 {

427 \keys_set:nn { talk / frame } {#2}

428 \bool_set_false:N \1__talk_frame_verb_bool
429 __talk_frame_process:nn {#1} { \frametitle {#3} #4 }
430 T

431 {2

432 \NewDocumentEnvironment { framex }

433 {D<>{all } ={ action-spec } 0 { } +m ¢ }
434 {

435 \keys_set:nn { talk / frame } {#2}

436 \bool_set_true:N \1__talk_frame_verb_bool
437 \tl_gset:Nn \g__talk_frame_title_t1l {#3}

438 \exp_args:Nne __talk_frame_process:nn {#1}
439 { \tl_to_str:n { \frametitle } \exp_not:n { {#3} #4 } }
440 T

441 {1}

442 ¥

443 {

444 \RenewDocumentEnvironment { frame }

445 {ID<> {all } = { action-spec } '0 { } +b }
446 {

447 \keys_set:nn { talk / frame } {#2}

448 \bool_set_false:N \1__talk_frame_verb_bool
449 __talk_frame_process:nn {#1} {#3}

450 }

451 {7

452 \NewDocumentEnvironment { framex }

453 {ID<> {all } = { action-spec } '0 { } c }
454 {

455 \keys_set:nn { talk / frame } {#2}

456 \bool_set_true:N \1__talk_frame_verb_bool
457 __talk_frame_process:nn {#1} {#3}

458 }

459 {7

460 }

(End of definition for frame and frame*. These functions are documented on page 77.)

a1 {/class)

27

Part V
Itx-talk-frame — The structure of
frames

1 Itx-talk-frame-structure implementation

Start the DocStrip guards.
1 (xclass)
Identify the internal prefix.
. (ee=talk)

1.1 Columns

; \keys_define:nn { talk }
1 { columns .inherit:n = talk / column }

\1__talk_columns_wd_tl We store the requested width for columns in a t1 as this means that the key value will
make sense even if it depends on the current \textwidth.
s \keys_define:nn { talk / columns }
¢ { width .tl_set:N = \1__talk_columns_wd_tl }
7 \keys_set:nn { talk / columns }
¢ { width = \textwidth }

(End of definition for \1__talk_columns_wd_t1.)

columns (env.) Columns are block-like environments so we start and end with a \par to ensure correct
tagging.
o \NewDocumentEnvironment { columns } { D <> { al1 } 0 { } }
o {
11 __talk_action_begin:n {#13}
12 \par
13 \keys_set:nn { talk / columns } {#2}
14 \hbox_set_to_wd:Nnw \1__talk_tmp_box { \1__talk_columns_wd_tl }

15 \dim_set:Nn \textwidth { \1__talk_columns_wd_tl }
16 \dim_set_eq:NN \columnwidth \textwidth
17 \hfil

18 \ignorespaces

19 }

20 {

21 \unskip

2 \hfil

23 \hbox_set_end:

24 \box_use_drop:N \1__talk_tmp_box

25 \par

2% __talk_action_end:

27 }

28

\1__talk_column_alignment_tl
s \keys_define:nn { talk / column }

29 {

30 b .meta:n =

31 { vertical-alignment = bottom } ,
32 b .value_forbidden:n = true ,

33 c .meta:n =

34 { vertical-alignment = center } ,
35 c .value_forbidden:n = true ,

36 t .meta:n =

37 { vertical-alignment = top } ,
38 t .value_forbidden:n = true ,

39 vertical-alignment .choices:nn =
40 { bottom , center , top }

41 {

a2 \tl_set_eq:NN \1__talk_column_alignment_tl
43 \1_keys_value_tl

44 }

45 ¥

s \keys_set:nn { talk / column }

47 {

a8 vertical-alignment = center
w0}

(End of definition for \1__talk_column_alignment_tl.)

_talk colum align botton:n Based on ideas in the highly experimental xbox.
__talk colum align _center:n 5, \cs_new_protected:Npn __talk_column_align_bottom:n #1
__talk_column_align_top:n { \vbox:n {#1} }
s> \cs_new_protected:Npn __talk_column_align_center:n #1

53 {

54 \vbox:n

55 {

56 \hbox:n

57 {

58 \box_move_down:nn

59 {

60 0.5 \box_ht:N \1__talk_tmp_box
61 - \tex_fontdimen:D 22 ~ \tex_textfont:D 2 ~
62 ¥

63 { \vbox:n {#1} }

64 }

65 }

66 ¥

o7 \cs_new_protected:Npn __talk_column_align_top:n #1
o2 { \vbox_top:n {#1} }

(End of definition for __talk_column_align_bottom:n, __talk_column_align_center:n, and __-
talk_column_align_top:n.)

column (env.) A cut-down version of a minipage: we want to be clear on the semantic meaning. the
action is applied inside the box after starting horizontal mode to avoid spacing issues
when switching whatsits in and out.

50 \NewDocumentEnvironment { column } { D <> { all } 0 { }m }

29

\1__talk_float_alignment_t1

81

\par
\keys_set:nn { talk / column } {#2}
\vbox_set_to_wd:Nnw \1__talk_tmp_box {#3}

\dim_set:Nn \textwidth {#3}
\dim_set_eq:NN \columnwidth \textwidth
\@parboxrestore

\leavevmode

\raggedright

__talk_action_begin:n {#1}
\ignorespaces

The \@ignore here means that any spaces after \end{column} are suppressed by a
\ignorespaces inserted by the kernel. The \par before __talk_action_end: is needed
as the group formed for actions would otherwise trap for example alignment changes.

90

91

{

\par
__talk_action_end:

\vbox_set_end:

\use:c { __talk_column_align_ \1__talk_column_alignment_tl :n }
{ \vbox_unpack_drop:N \1__talk_tmp_box }

\hfil

\par

\@ignoretrue

1.2 Floats
Well really “not floats at all” but the idea is clear.

We only worry about horizontal alignment here.

o2 \tl_new:N \1__talk_float_alignment_tl

(End of definition for \1__talk_float_alignment_t1.)

A bit similar to the current approach to lists: we need a template at the start but

a common function at the end. The float-placement key is at present just there to
allow mopping up of any argument that is given by accident, hence maps to a temporary
variable.

3

102

103

104

105

106

107

\NewTemplateType { floatenv } { 2 }
\DeclareTemplateInterface { floatenv } { talk } { 2 }

{
float-placement : tokenlist ,
horizontal-alignment : choice { left , center , right } = left
}
\DeclareTemplateCode { floatenv } { talk } { 2 }
{

float-placement = \1__talk_tmp_tl ,
horizontal-alignment =
{
left = \tl_set:Nn \1__talk_float_alignment_tl { flushleft } ,
center = \tl_set:Nn \1__talk_float_alignment_tl { center } ,
right = \tl_set:Nn \1__talk_float_alignment_tl { flushright }
}

30

~—

110 \SetTemplateKeys { floatenv } { talk } {#1}

111 \begin { minipage } { \columnwidth }

112 \begin { \1__talk_float_alignment_tl }

113 \cs_set_nopar:Npn \@captype {#2}

114 }

115 \DeclareInstance { floatenv } { std } { talk } { horizontal-alignment = left }

\endfloatenv And the common end function.
116 \cs_new_protected:Npn \endfloatenv
117 {
118 \end { \1__talk_float_alignment_tl }
119 \end { minipage }
120 }

(End of definition for \endfloatenv. This function is documented on page 77?.)

figure (env.) Unlike beamer, we allow for overlays for the environments as a whole.

table (env.) ., \clist_map_inline:nn { figure , table }
122 {
123 \NewDocumentEnvironment {#1} { D <> { all } = { float-placement } 0 { } }
124 {
125 __talk_action_begin:n {##1}
126 \UselInstance { floatenv } { std } {##2} {#1}
127 }
128 {
120 \endfloatenv
130 __talk_action_end:
131 }

\cefigure The standard variables needed to make captions work (nothing for list of floats, as at
\thefigure present those are not offered).

\c@table \newcounter {#1}
\thetable 33 \tl_new:c { #1 name }
\figurename 13 \tl_set:ce { #1 name } { \text_titlecase_first:n {#1} }
\tableename 135 \tl_new:c { fnum@ #1 }
\fnum@figure 1% \tl_set:ce { fnum@ #1 }
\fnum@table % { \exp_not:c { #1 name } \exp_not:N \nobreakspace \exp_not:c { the #1 } }
138 }

(End of definition for \cefigure and others. These variables are documented on page 77.)
The spacing values needed for the standard function.

130 \newlength \abovecaptionskip

1o \newlength \belowcaptionskip

11 \setlength \abovecaptionskip { 7pt }

122 \setlength \belowcaptionskip { 7pt }

\@caption This is a copy of the kernel version of the function, but with writing to the list of whatever
file removed. It is very likely this needs to be reworked as a template, but that will likely
come from the kernel.

143 \cs_set_protected:Npn \@caption #1 [#2] #3
144 {
145 \par

31

\@makefntext

146 \begingroup

147 \@parboxrestore

148 \if@minipage \@setminipage \fi

149 \normalsize

150 \@makecaption { \csname fnum@ #1 \endcsname } { \ignorespaces #3 }
151 \par

152 \endgroup

153 }

(End of definition for \@caption. This function is documented on page 77.)

1.3 Footnotes

A copy of the version provided by article: as for \@caption, we likely want a template
here. It’s not at present completely clear what will happen in the kernel (as the footnote
templates currently leave \@makefntext alone).

15 \cs_new_protected:Npn \@makefntext #1

155 {

156 \parindent lem

157 \noindent

158 \hb@xt@ 1.8em { \hss \G@makefnmark }
159 #1

160 }

(End of definition for \@makefntext. This function is documented on page ?77.)

161 (/class)

32

Part V1
Itx-talk-mode — Modes

1 Itx-talk-mode implementation

Start the DocStrip guards.
1 (*class)
Identify the internal prefix.
. (e@=talk)

__talk_mode:nT A simplified version of \mode: only deal with the argument form, only check the entire
overlay spec as a string.
s \prg_new_protected_conditional:Npnn __talk_mode:n #1 { T }
4 {
5 \bool_lazy_or:nnTF
6 { \str_if_eq_p:nn {#1} { all } }
7 { \str_if_eq_p:Vn \1__talk_mode_str {#1} }
8 \prg_return_true:
0 \prg_return_false:

0}
(End of definition for __talk_mode:nT.)

\mode

11 \NewDocumentCommand \mode { D <> { all } +m }
12 { __talk_mode:nT {#1} {#2} }

(End of definition for \mode. This function is documented on page ?7.)

15 (/class)

33

Part VII
Itx-talk-overlay — Overlays

1 Itx-talk-overlay implementation

Start the DocStrip guards.
1 (*class)
Identify the internal prefix.
. (00=talk)

1.1 Utilities

__talk_if_overlay:nTF

__talk_if_overlay:VIF s \prg_new_protected_conditional:Npnn __talk_if_overlay:n #1 { T , F , TF }
__talk_overlay_arg:n 4

5 __talk_decode_parse:n {#1}

6 \bool_if:NTF \1__talk_decode_overlays_bool
7 \prg_return_true:

8 \prg_return_false:

9 }

10 \prg_generate_conditional_variant:Nnn __talk_if_overlay:n { V} { T , F , TF }
A macro processor variant of the check that always results in an N-type bool.
11 \cs_new_protected:Npn __talk_overlay_arg:n #1

PR |

13 __talk_if_overlay:nTF {#1}

14 { \cs_set:Npn \ProcessedArgument { \c_true_bool } }
15 { \cs_set:Npn \ProcessedArgument { \c_false_bool } }
6}

(End of definition for __talk_if_overlay:nTF and __talk_overlay_arg:n.)

1.2 Action commands and environments

Commands that can be used as actions all have a common form (with one exception).
The common internal structure is used to enable them to be used as actions by looking
for the name __talk_action_(name):N. This is set up such that the inactive versions
insert a whatsit equal to that which would be present if they were active: that’s needed
for spacing.

__talk_action_:N The fallback action. At present, we need to create a whatsit here to avoid spacing issues.
(In LuaTgX, if we can move to attributes, this can be removed.)

17 \cs_new_protected:Npn __talk_action_:N #1 { \opacity_select:n { 1 } }

(End of definition for __talk_action_:N.)

__talk_action_alert:N At present a color selection.

15 \cs_new_protected:Npn __talk_action_alert:N #1
19 {

20 \bool_if:NTF #1

21 { \color_select:n { alert } }

34

2 { \color_select:n { . } }
23 }

(End of definition for __talk_action_alert:N.)

__talk_action_invisible:N Simply hide unconditionally

__talk_action_visible:N ,, \cs_new_protected:Npn __talk_action_invisible:N #1

s A

26 \bool_if:NTF #1

27 { \opacity_select:n { 0 } }
28 { \opacity_select:n { 1 } }
2}

50 \cs_new_protected:Npn __talk_action_visible:N #1
s o

32 \bool_if:NTF #1

33 { \opacity_select:n { 1 } }
34 { \opacity_select:n { 0 } }
35 }

(End of definition for __talk_action_invisible:N and __talk_action_visible:N.)

__talk_action_only_begin:N Here, we simply throw away the content we do not want: this is done by typesetting in
__talk_action_only_end:N a disposable box.

36 \cs_new_protected:Npn __talk_action_only:N #1

37 {

38 \bool_if:NF #1

39 { \vbox_set:Nw \1__talk_tmp_box }

40 }

21 \cs_new_protected:Npn __talk_action_only_end:N #1
42 {

a3 \bool_if:NF #1

4 { \vbox_set_end: }

45 }

(End of definition for __talk_action_only_begin:N and __talk_action_only_end:N.)

\1__talk_uncover_hidden_fp Currently just an on-off, but that will change.
s \NewTemplateType { hidden } { O }
47 \DeclareTemplateInterface { hidden } { talk } { 0 }
s { opacity : real = 0 }
2 \DeclareTemplateCode { hidden } { talk } { 0 }
so { opacity = \1__talk_uncover_hidden_fp }
st { \opacity_select:n { \1__talk_uncover_hidden_fp } }
5> \DeclareInstance { hidden } { std } { talk } { }

(End of definition for \1__talk_uncover_hidden_fp.)

__talk_action_uncover:N Use the template

53 \cs_new_protected:Npn __talk_action_uncover:N #1

54 {

55 \bool_if:NTF #1

56 { \opacity_select:n { 1 } }

57 { \UseInstance { hidden } { std } }
58 }

35

(End of definition for __talk_action_uncover:N.)

\only Commands and environments where the payload applies when the material is not active
\invisible on the slide.

\uncover 50 \clist_map_inline:nn { only , invisible , uncover }

o {

61 \ExpandArgs { cne } \NewDocumentCommand {#1}

62 { > { __talk_overlay_arg:n } D <> { all } +m }
63 {

64 \group_begin:

65 \exp_not:c { __talk_action_ #1 :N } ##1

66 ##2

67 \cs_if_exist:cT { __talk_action_ #1 _end:N }
68 { \exp_not:c { __talk_action_ #1 _end:N } ##1 }
69 \group_end:

70 }

(End of definition for \only, \invisible, and \uncover. These functions are documented on page 77.)

onlyenv (env.)

invisibleenv (env.) \ExpandArgs { nnee } \NewDocumentEnvironment { #1 env }

uncoverenv (env.) 7 { > { __talk_overlay_arg:n } D <> { all } }
73 { \exp_not:c { __talk_action_ #1 :N } ##1 }
74 {
75 \cs_if_exist:cT { __talk_action_ #1 _end:N }
76 { \exp_not:c { __talk_action_ #1 _end:N } ##1 }
77 }
R

\alert And those where the action applies when we are on the slide.
\visible \clist_map_inline:nn { alert , visible }

80 {
81 \ExpandArgs { cne } \NewDocumentCommand {#1}
82 { > { __talk_overlay_arg:n } D <> { all } +m }
83 {
84 \group_begin:
85 \exp_not:c { __talk_action_ #1 :N } ##1
86 ##2
87 \group_end:
88 }

(End of definition for \alert and \visible. These functions are documented on page 77?.)

alertenv (env.)

visibleenv (env.) \ExpandArgs { nnee } \NewDocumentEnvironment { #1 env }
% { > { __talk_overlay_arg:n } D <> { all } }
o1 { \exp_not:c { __talk_action_ #1 :N } ##1 }
92 {12
93 }

\only This code needs to be done manually as for the command version the content must be
entirely discarded. That can’t work for the environment version, which has to deal with
for example single items in a list (and so cannot be collected up verbatim and must use
a box).

36

\1__talk_saved_overlays_bool
\1__talk_saved_action_str
\1__talk_saved_actions_bool

actioneyarctdon)
__talk_action_begin:n
__talk_action_end:

o \RenewDocumentCommand \only { D <> { all } +m }

95 {

9% __talk_if_overlay:nT {#1}
97 {#2}

98 }

(End of definition for \only. This function is documented on page ?77.)

99 \bool_new:N \1__talk_saved_overlays_bool
100 \str_new:N \1__talk_saved_action_str
100 \bool_new:N \1__talk_saved_actions_bool

(End of definition for \1__talk_saved_overlays_bool, \1__talk_saved_action_str, and \1__talk_-
saved_actions_bool.)

As we need data on not just overlays but also actions at the end of the environment, this
has to be done manually. To allow working with environments but also items, the code
needs to save data for the end function. The group is needed for cases where we are not
in a KTEX environment group.

102 \NewDocumentCommand \action { D <> { all } +m }

103 {

104 \group_begin:

105 __talk_action_begin:n {#1}
106 #2

107 __talk_action_end:

108 \group_end:

109 }

110 \NewDocumentEnvironment { actionenv } { D <> { all } }
111 { __talk_action_begin:n {#1} }

12 { __talk_action_end: }

113 \cs_new_protected:Npn __talk_action_begin:n #1

114 {

115 \group_begin:

116 __talk_decode_parse:n {#1}

117 \bool_set_eq:NN \1__talk_saved_overlays_bool
118 \1__talk_decode_overlays_bool

119 \str_set_eq:NN \1__talk_saved_action_str

120 \1__talk_decode_action_str

121 \bool_set_eq:NN \1__talk_saved_actions_bool
122 \1__talk_decode_actions_bool

123 \bool_if:NTF \1__talk_decode_overlays_bool
124 {

125 \use:c { __talk_action_ \1__talk_decode_action_str :N }
126 \1__talk_decode_actions_bool

127 }

128 { \UseInstance { hidden } { std } }

129 }

130 \cs_new_protected:Npn __talk_action_end:

131 {

132 \bool_if:NT \1__talk_saved_overlays_bool

133 {

134 \cs_if_exist_use:cF

135 { __talk_action_ \1__talk_saved_action_str _end:N }

37

136 { \use_none:n }
137 \1__talk_saved_actions_bool

138 }
139 \group_end:
140 }

(End of definition for \action, __talk_action_begin:n, and __talk_action_end:. This function is
documented on page 77.)
1.3 Non-action commands and environments

This section contains commands and environments that do not need to be made available
as actions.

\alt Simple wrappers around the internal switch.
121 \NewDocumentCommand \alt { D <> { all } +m +m }

142 {

143 __talk_if_overlay:nTF {#1}
144 {#2}

145 {#3}

146 }

(End of definition for \alt. This function is documented on page 77.)

\onslide Simply make transparent: we will likely need to save the original opacity level. To allow
__talk_onslide:n us to apply independent of group level, a little work is needed.
__talk_onslide_reset: ,; \NewDocumentCommand \onslide { D <> { all } }
148 { __talk_onslide:n {#1} }
120 \cs_new_protected:Npn __talk_onslide:n #1

150 {

151 \tl_use:N \g__talk_onslide_tl

152 __talk_if_overlay:nTF {#1}

153 { __talk_onslide_reset: }

154 {

155 \opacity_select:n { 0 }

156 \tl_gset:Nn \g__talk_onslide_escape_tl

157 {

158 \opacity_select:n { 0 }

150 \group_insert_after:N \g__talk_onslide_escape_tl
160 ¥

161 \group_insert_after:N \g__talk_onslide_escape_tl
162 \tl_gset:Nn \g__talk_onslide_tl

163 {

164 \tl_gclear:N \g__talk_onslide_tl

165 \tl_gclear:N \g__talk_onslide_escape_tl

166 __talk_onslide_reset:

167 }

168 }

169 }

170 \cs_new_protected:Npn __talk_onslide_reset: { \opacity_select:n { 1 } }

(End of definition for \onslide, __talk_onslide:n, and __talk_onslide_reset:. This function is
documented on page 77.)

38

\g__talk_onslide_tl

\g__talk_onslide_escape_tl ;;; \tl_new:N \g__talk_onslide_tl
172 \tl_new:N \g__talk_onslide_escape_tl

(End of definition for \g__talk_onslide_tl and \g__talk_onslide_escape_t1.)

\temporal A tricky one: to separate the not-on-current-slide cases, the flag to continue is used.

173 \NewDocumentCommand \temporal { D <> { all } +m +m +m }

174 {

175 __talk_if_overlay:nTF {#1}

176 {#3%}

177 {

178 \bool_if:NTF \g__talk_slide_continue_bool
179 {#4}

180 {#2}

181 }

182 }

(End of definition for \temporal. This function is documented on page ?77.)

\pause A thin wrapper.

153 \NewDocumentCommand \pause { o }

184 {

185 \IfNoValueTF {#1}

186 { \int_gincr:N \g__talk_pauses_int }

187 { \int_gset:Nn \g__talk_pauses_int {#1} }

188 \exp_args:Ne __talk_onslide:n { \int_eval:n { \g__talk_pauses_int + 1 } - }
189 }

(End of definition for \pause. This function is documented on page 77?.)

1.4 Fixed-size areas

__talk_overprint_begin:n A common auxiliary for overprinting, which starts off much the same for both
overlayarea and overprint.

10 \cs_new_protected:Npn __talk_overprint_begin:n #1

191 {

192 \par

103 \vbox_set_to_wd:Nnw \1__talk_tmp_box {#1}
104 \raggedright

195 \ignorespaces

196 }

(End of definition for __talk_overprint_begin:n.)

overlayarea (env.) An initial approach: quite similar to a column.

107 \NewDocumentEnvironment { overlayarea } { mm }
ws { __talk_overprint_begin:n {#1} }

199 {

200 \vbox_set_end:

201 \vbox_to_ht:nn {#2}

202 {

203 \box_use_drop:N \1__talk_tmp_box
204 \vfil

39

205 }
206 \par
207 }

\1__talk_overprint_int Track the overprints on a slide: as the slide forms a group, we do not need to worry about
resetting.

208 \int_new:N \1__talk_overprint_int

(End of definition for \1__talk_overprint_int.)

__talk_frame_overprint: To refer to the current overprint environment within the document: needed in the .aux
so avoids using non-letters.

200 \cs_new:Npn __talk_frame_overprint:

a0 {

211 \int_to_Roman:n \g__talk_frame_int

212 \int_to_roman:n \1__talk_overprint_int
CIERN o

(End of definition for __talk_frame_overprint:.)

__talk_overpwerprdmte(tnv.) For overprinting, in contrast to beamer we use a two-pass approach to save the size at
__talk_overprint_check_ht:n the end of the run: this means you can use \only for example in overprinting.

214 \NewDocumentEnvironment { overprint } { 0 { \textwidth } }
a5 { __talk_overprint_begin:n {#1} }

216 {

217 \vbox_set_end:

218 \int_incr:N \1__talk_overprint_int

210 __talk_overprint_save_ht:

220 \cs_if_exist:cTF

221 { overprint@ __talk_frame_overprint: }

222 {

223 \dim_compare:vNnTF

224 { overprint@ __talk_frame_overprint: }
225 > { \box_ht:N \1__talk_tmp_box }

226 {

227 \vbox_to_ht:vn

228 { overprint@ __talk_frame_overprint: }
229 {

230 \box_use_drop:N \1__talk_tmp_box
231 \vfil

232 }

233 }

234 { \box_use_drop:N \1__talk_tmp_box }
235 T

236 { \box_use_drop:N \1__talk_tmp_box }

237 \par

238 }

As there is no clear end-point for overprinting, we need to be careful to keep the current
width separate from the saved one. The rest is then about saving to the .aux file and
helping out the user.

30 \cs_new_protected:Npn __talk_overprint_save_ht:

240 {

241 \tl_if_exist:cF { g__talk_overprint_ __talk_frame_overprint: _tl }

40

\textbf
\textit
\textmd
\textnormal
\textrm
\textsc
\textsf
\textsl
\texttt
\textup
\emph
\stdtextbf
\stdtextit
\stdtextmd
\stdtextnormal
\stdtextrm
\stdtextsc
\stdtextsf
\stdtextsl

0o {

243 \tl_new:c { g__talk_overprint_ __talk_frame_overprint: _tl }
244 \tl_gset:cn { g__talk_overprint_ __talk_frame_overprint: _tl }
245 { Opt }

246 }

247 \tl_gset:ce { g__talk_overprint_ __talk_frame_overprint: _tl }

248 {

249 \dim_max:vn { g__talk_overprint_ __talk_frame_overprint: _tl }
250 { \box_ht:N \1__talk_tmp_box }

251 }

252 \legacy_if:nT { @filesw }

253 {

254 \iow_now:Ne \Q@auxout

255 {

256 \gdef \exp_not:c { overprint@ __talk_frame_overprint: }
257 {

258 \exp_not:v { g__talk_overprint_ __talk_frame_overprint: _tl }
259 }

260 }

261 }

262 \hook_gput_code:nne { enddocument / afterlastpage } { talk }

263 { __talk_overprint_check_ht:n { __talk_frame_overprint: } }
264 }

s \cs_new_protected:Npn __talk_overprint_check_ht:n #1

266 {

267 \bool_lazy_and:nnF

268 { \exp_not:N \cs_if_exist_p:c { overprint@ #1 } }

269 {

270 \dim_compare_p:vNv { overprint@ #1 } = { g__talk_overprint_ #1 _tl1 }
271 }

272 {

273 \msg_warning:nn { talk } { overprint-ht }

274 \cs_gset_protected:Npn __talk_overprint_check_ht:n ##1 { }
275 T

276 }

77 \msg_new:nnn { talk } { overprint-ht }

278 {

279 Overprint~area~height~has~changed:\\

280 rerun~LaTeX.

281 }

(End of definition for __talk_overprint_save_ht: and __talk_overprint_check_ht:n.)

1.5 Adding overlays to existing commands

Make the standard text commands overlay-aware. To keep the spacing unchanged when
the command is not active, we use the same approach as the kernel does for inserting the
right grouping.

22 \tl_map_inline:nn

283 {

284 \textbf

285 \textit

286 \textmd

287 \textnormal

41

\includegraphics
\stdincludegraphics

\label
__talk_label:n

288 \textrm

289 \textsc

290 \textsf

201 \textsl

292 \texttt

203 \textup

294 \emph

295 }

296 {

207 \ExpandArgs { c } \NewCommandCopy { std \cs_to_str:N #1 } #1
208 \ExpandArgs { Nne } \RenewDocumentCommand #1
209 {D<x>{all } +m }

300 {

301 \exp_not:N __talk_if_overlay:nTF {##1}
302 { \exp_not:c { std \cs_to_str:N #1 } }
303 { \exp_not:N __talk_textcmd_eqiv:n }
304 {##2}

305 }

306 }

507 \cs_new_protected:Npn __talk_textcmd_eqiv:n #1
308 {

300 \mode_if_math:TF

310 { { \mbox {#1} } }

311 {

312 \mode_leave_vertical:

313 {#1}

314 }

315 }

(End of definition for \textbf and others. These functions are documented on page 77.)

Just wrap up the args and forward if appropriate. The star is #1 here as that matches
the documented behavior of starred commands generally.

s16 \RequirePackage { graphicx }

517 \NewCommandCopy \stdincludegraphics \includegraphics

s15 \RenewDocumentCommand \includegraphics { s D <> { all } o om }

319 {

320 __talk_if_overlay:nT {#2}

321 {

322 \use:e

323 {

324 \exp_not:N \stdincludegraphics

325 \IfBooleanT #1 { * }

326 \IfNoValueF {#3} { [\exp_not:n { {#3} } 1 }
327 \IfNoValueF {#4} { [\exp_not:n { {#4} } 1 }
328 }

329 {#5}

330 T

331 }

(End of definition for \includegraphics and \stdincludegraphics. These functions are documented
on page 77.)

Here, we can’t wrap the existing command up as we need the space hack, so it has to
be declared from scratch. There is also a non-standard overlay default. At present, no

42

special tricks as seen in beamer.
;32 \RenewDocumentCommand \label { D <> { 1 } m }

333 {

334 \@bsphack

335 __talk_if_overlay:nT {#1}

336 { __talk_label:n {#2} }

337 \@esphack

338 }

530 \cs_new_protected:Npn __talk_label:n #1
340 {

341 \begingroup

342 \UseHookWithArguments { label } { 1 } {#1}
343 \protected@urite \Qauxout { }

344 {

345 \string \newlabel {#1}

346 {

347 { \@currentlabel }

348 { \thepage }

349 { \@currentlabelname }

350 { \@currentHref }

351 { \@kernel@reserved@label@data }
352 }

353 }

354 \endgroup

355 }

(End of definition for \label and __talk_label:n. This function is documented on page 77.)
356 (/class)

43

Part VIII
Itx-talk-required — “Required”
definitions

1 Itx-talk-required implementation

Start the DocStrip guards.
1 (xclass)
Identify the internal prefix.
. (ee=talk)
Here we collect up things that are more-or-less required to create a useful class but are
not defined by the IATEX kernel for historical reasons. They are therefore largely copies

from article.cls and contain “classical” definitions so that they follow the expectations
of third-party code.

\today This is the definition as done in the standard classes.

5 \cs_new_nopar:Npn \today

+ A

5 \ifcase \month \or
6 January \or

7 February \or
8 March \or

9 April \or

10 May \or

11 June \or

12 July \or

13 August \or

14 September \or
15 October \or
16 November \or
17 December

18 \fi

19 \space

20 \number \day ,
21 \space

2 \number \year
23 }

(End of definition for \today. This function is documented on page ?77.)

1.1 Standard design settings

» \setcounter { tocdepth } { 3 }

s \setlength \arraycolsep { 5pt }

s \setlength \tabcolsep { 6pt }

7 \setlength \arrayrulewidth { 0.4pt }
\setlength \doublerulesep { 2pt }

20 \setlength \tabbingsep { \labelsep }
o \skip \@mpfootins = \skip \footins

N

N

44

;1 \setlength \fboxsep { 3pt }
2 \setlength \fboxrule { 0.4pt }

1.2 List support

3 \setlength \labelsep { 0.5em }

s \cs_new:Npn \labelenumi { \theenumi .

}

55 \cs_new:Npn \labelenumii { (\theenumii) }

36 \cs_new:Npn \labelenumiii { \theenumiii . }

s7 \cs_new:Npn \labelenumiv { \theenumiv . }

55 \cs_new:Npn \labelitemi { \labelitemfont \textbullet }

39 \cs_new:Npn \labelitemii { \labelitemfont \bfseries \textendash }
20 \cs_new:Npn \labelitemiii { \labelitemfont \textasteriskcentered }
21 \cs_new:Npn \labelitemiv { \labelitemfont \textperiodcentered }
2 \cs_new:Npn \labelitemfont { \normalfont }

.3 \setlength \leftmargini { 2em }
2 \setlength \leftmarginii { 2em }
25 \setlength \leftmarginiii { 2em }
% \setlength \labelsep { 0.5em }

IS

 \setlength \labelwidth { \leftmargini }

s \addtolength \labelwidth { -\labelsep }

20 \cs_gset_nopar:Npn \@listi

50 {

51 \leftmargin \leftmargini

52 \topsep 3pt plus 2pt minus 2.5pt
53 \parsep Opt

54 \itemsep 3pt plus 2pt minus 3pt
55 }

56 \cs_gset_eq:NN \@listI \@listi
s7 \cs_gset_nopar:Npn \@listii
58 {

59 \leftmargin \leftmarginii

60 \topsep 2pt plus 1pt minus 2pt
61 \parsep Opt plus 1pt

62 \itemsep \parsep

63 }

e+ \cs_gset_nopar:Npn \@listiii
65 {

66 \leftmargin \leftmarginiii

67 \topsep 2pt plus 1pt minus 2pt

68 \parsep Opt plus 1pt
69 \itemsep \parsep

o}

71 \setlength \partopsep { Opt }

7 (/class)

45

Part IX
Itx-talk-structure — Structural
commands

1 Itx-talk-structure implementation

Start the DocStrip guards.
1 (xclass)
Identify the internal prefix.
. (0@=talk)

1.1 Frame title

\g__talk_frame_title_tl

\g__talk_frame_subtitle_tl 3 \tl_new:N \g__talk_frame_title_tl
2 \tl_new:N \g__talk_frame_subtitle_tl

(End of definition for \g__talk_frame_title_tl and \g__talk_frame_subtitle_tl.)

\frametitle Just data storage: at the present no use of the optional argument.
5 \NewDocumentCommand \frametitle { D <> { all } 0 {#3} m }

o {

7 __talk_if_overlay:nT {#1}

8 { \tl_gset:Nn \g__talk_frame_title_tl {#3} }

9 }

10 \NewDocumentCommand \framesubtitle { D <> { all } 0 {#3} m }
11 {

12 __talk_if_overlay:nT {#1}

13 { \tl_gset:Nn \g__talk_frame_subtitle_tl {#3} }

14 }

(End of definition for \frametitle. This function is documented on page 77.)

__talk_frame_title:n Inserting the frame title requires we deal with tagging as well as appearance: if there is
__talk_frame_title_tagged:n a title, we need to tag just this part of the header.

15 \NewTemplateType { frametitle } { 1 }
16 \DeclareTemplateInterface { frametitle } { talk } { 1 }

T

18 after-vspace : skip = \bigskipamount ,

19 before-vspace : skip = Oem ,

20 color : tokenlist = ,

21 font : tokenlist = \Large \bfseries
»}

23 \DeclareTemplateCode { frametitle } { talk } { 1 }
24 {

25 after-vspace = \1__talk_frametitle_after_skip ,

2 before-vspace = \1__talk_frametitle_before_skip ,
27 color \1__talk_frametitle_color_tl ,
28 font \1__talk_frametitle_font_tl

46

31 \noindent

32 \vspace { \1__talk_frametitle_before_skip }

33 \group_begin:

34 \tl_if_empty:NF \1__talk_frametitle_color_tl
35 { \color_select:V \1__talk_frametitle_color_tl }
36 \1__talk_frametitle_font_tl

37 \tl_if_blank:nF {#1}

38 { __talk_frame_title:n {#1} }

39 \par

40 \group_end:

a1 \vspace { \1__talk_frametitle_after_skip }

Fos }
.3 \DeclareInstance { frametitle } { header } { talk } { }
2 \cs_new_protected:Npn __talk_frame_title:n #1

s

46 \bool_if:NTF \g__talk_frame_tag_bool

a7 { __talk_frame_title_tagged:n }

48 { \use:n }

49 {#1}

0}

st \cs_new_protected:Npn __talk_frame_title_tagged:n #1
52 {

53 __talk_header_tag_begin:e

54 {

55 firstkid = true ,

56 parent = \int_use:N \g__talk_frame_struct_int ,
57 tag = frametitle ,

58 title = { \text_purify:n { \g__talk_frame_title_tl } } ,
59 }

60 \group_begin:

61 \tagpdfparaOff

62 #1

63 \group_end:

64 __talk_header_tag_end:

65}

(End of definition for __talk_frame_title:n and __talk_frame_title_tagged:n.)

1.2 Sectioning

\1__talk_section_tl Two versions of the data store: one set locally (but at the top level) for general use, one
\g__talk_section_tl set (and more importantly cleared) globally to allow insertion in the header area just
\1__talk_subsection_tl once per name.
\g__talk_subsection_tl 4 \tl_new:N \1__talk_section_tl
\1__talk_subsubsection_tl & \tl_new:N \g__talk_section_tl
\g__talk_subsubsection_tl e \tl_new:N \1__talk_subsection_tl
6o \tl_new:N \g__talk_subsection_tl
70 \tl_new:N \1__talk_subsubsection_tl
71 \tl_new:N \g__talk_subsubsection_tl

(End of definition for \1__talk_section_tl and others.)

\section Here, we need full WTEX counters, so create them using the appropriate mechanism: that
\subsection also means we can sort out counter dependency and the appearance (using the same setup
\subsubsection
\thesection 47

\thesubsection
\thesubsubsection

as in article). As (subsub)section numbers never increment inside frames, we remove these
counters from the general tracker.

7 \newcounter { section }

73 \newcounter { subsection } [section]

7+ \newcounter { subsubsection } [subsection]

75 \seq_gremove_all:Nn \1__talk_cnt_reset_seq { section }

7 \seq_gremove_all:Nn \1__talk_cnt_reset_seq { subsection }

77 \seq_gremove_all:Nn \1__talk_cnt_reset_seq { subsubsection }

7z \cs_gset:Npn \thesection { \@arabic \c@section }

79 \cs_gset:Npn \thesubsection { \thesection . \@arabic \c@subsection }

20 \cs_gset:Npn \thesubsubsection { \thesubsection . \@arabic \c@subsubsection }

(End of definition for \section and others. These functions are documented on page 77.)

\section The sectioning commands all have essentially the same form: we therefore create using a
\subsection generator with the necessary conditionals in place. As we do not typeset sections at this
\subsubsection stage, the code is quite different from article. This also means that the bookmark links
\insertsection mneed to point forward to the next slide: if that doesn’t appear, the bookmarks will be
\insertsubsection out. Using the general scratch sequence here should be OK: it really is a one-off setting.
\insertsubsubsection We need a sequence to allow indexed mapping to avoid any extra setup for the depth
value.
st \seq_set_from_clist:Nn \1_tmpa_seq
22 { section , subsection , subsubsection }
s \seq_map_indexed_inline:Nn \1_tmpa_seq

84 {

85 \use:e

86 {

87 \NewDocumentCommand \exp_not:c { insert #2 } { }

89 \exp_not:N \tl_use:N

90 \exp_not:c { 1__talk_ #2 _tl }

91 }

2 \NewDocumentCommand \exp_not:c {#2}

03 {sD<>{all } 0 {##4} m }

94 {

95 \exp_not:N \refstepcounter {#2}

9% \UseTaggingSocket { sec / end } { \use:c { toclevel@ #2 } }
o7 \UseTaggingSocket { sec / begin }

98 {

99 { \use:c { toclevel@ #2 } }

100 {

101 tag =

102 \exp_not:N \UseStructureName

103 { sec / \use:c { toclevel@ #2 } }

104 }

105 }

106 \tl_set:Nn \exp_not:c { 1__talk_ #2 _t1 } {##4}
107 \UseTaggingSocket { talk / sec / title } {#2}
108 \str_if_eq:nnT {#2} { section }

109 { \tl_clear:N \exp_not:N \1__talk_subsection_tl }
110 \str_if_eq:nnF {#2} { subsubsection }

111 { \tl_clear:N \exp_not:N \1__talk_subsubsection_tl }
112 \exp_not:N \addcontentsline { toc } {#2}

48

114 \exp_not:N \int_compare:nNnF {#1} >

115 { \exp_not:N \value { secnumdepth } }
116 {

117 \exp_not:N \protect \exp_not:N \numberline
118 { \exp_not:c { the #2 } }

119 }

120 ##4

121 }

122 \hook_use:n { #2 / begin }

123 }

124 \hook_new:n { #2 / begin }

125 }

126 F

(End of definition for \section and others. These functions are documented on page 77.)

talk/sec/title The argument is one of section, subsection or subsubsection.

__talk_sect_tag:nn ., \NewTaggingSocket { talk / sec / title } { 1 }
126 \NewTaggingSocketPlug { talk / sec / title } { default }

19 { \exp_args:Ne __talk_sect_tag:nn { \text_purify:v { 1__talk_ #1 _ t1 } } {#1} }
130 \cs_new_protected:Npn __talk_sect_tag:nn #1#2

131 {

132 \tag_struct_begin:e

133 {

134 tag =

135 \UseStructureName { sec / \use:c { toclevel@ #2 } / title } ,
136 title = {#1} ,

137 actualtext = {#1} ,

138 }

139 \tag_struct_end:

140 }

121 \AssignTaggingSocketPlug { talk / sec / title } { default }

(End of definition for talk/sec/title and __talk_sect_tag:nn. This function is documented on page
?7.)

1.3 Table of contents

\@starttoc The standard kernel implementation here deliberately overwrites the file as soon as it’s
read. That’s no good for us as the table of contents can be read multiple times. So we
modify the code: we start from the tagging-aware version (this may need to be revisited).
We retain the ITEX 2¢ code as much as possible.

12 \cs_gset_protected:Npn \@starttoc #1

143 {

144 \begingroup

145 \makeatletter

146 \UseTaggingSocket { toc / starttoc / before } {#1}
147 \@input { \jobname .#1 }

148 \UseTaggingSocket { toc / starttoc / after } {#1}
149 \legacy_if:nT { @filesw }

150 {

151 \AddToHook { enddocument / afterlastpage }

152 {

49

153 \expandafter \newwrite \csname tf@ #1 \endcsname

154 \immediate \openout \csname tf@ #1 \endcsname \jobname .#1 \relax
155 }

156 }

157 \@nobreakfalse

158 \endgroup

159 }

(End of definition for \@starttoc. This function is documented on page 77.)

\tableofcontents For the present simply print the output.
160 \NewDocumentCommand \tableofcontents { 0 { } }

161 {

162 \group_begin:

163 \@starttoc { toc }
164 \group_end:

165 }

(End of definition for \tableofcontents. This function is documented on page ?7.)

\l@section Initial hard-coded versions to be templated once we have some other effects also working.
\l@subsection We may need to look at this “higher up” as we will need to know the section numbers.

\l@subsubsection ; \cs_new_protected:Npn \l@section #1#2
__talk_toc_aux:nnnn 1 { __talk_toc_aux:nnnn { 1 } { \bfseries \color { structure } } {#1} {#2} }

__talk_toc_dest:n 1 \cs_new_protected:Npn \l@subsection #1#2
__talk_toc_dest:w 169 {
__talk_toc_level:nnnn 170 __talk_toc_aux:nnnn

171 { 2 }
172 {
173 \skip_set:Nn \leftskip { 2em }
174 \CO].OI' { . }
175 }
176 {#1} {#2}
177 }
175 \cs_new_protected:Npn \l@subsubsection #1#2
179 {
180 __talk_toc_aux:nnnn
181 { 3 }
182 {
183 \skip_set:Nn \leftskip { 4em }
184 \color { . }
185 \footnotesize
186 }
187 {#1} {#2}
1.0 \cs_new_protected:Npn __talk_toc_aux:nnnn #1#2#3#4
190 {
101 \int_compare:nNnTF { \value { section } } < 1
192 { \use:n }
193 { __talk_toc_dest:n }
194 { __talk_toc_level:nnnn {#1} {#2} {#3} {#4} }
195 }

50

We can extract the details for the TOC levels from \@contentsline@destination. At
present, that is quite simple-minded: if we are in the current section, show fully, else
make semi-opaque. Needs a rounded-out interface but the basic idea will be the same.
196 \cs_new_protected:Npn __talk_toc_dest:n

197 {

198 \exp_after:wN __talk_toc_dest:w \@contentsline@destination

199 . 0.0 .0 . \g_stop

200 }

201 \cs_new_protected:Npn __talk_toc_dest:w #1 . #2 . #3 . #4 . #5 \q_stop #6
202 {

203 \int_compare:nNnTF { \value { section } } = {#2}

204 {#6}

205 {

206 \group_begin:

207 \opacity_select:n { 0.2 }

208 #6

209 \group_end:

210 }

211 }

212 \cs_new_protected:Npn __talk_toc_level:nnnn #1#2#3#4

s {

214 \int_compare:nNnF {#1} > { \value { tocdepth } }

215 {

216 \group_begin:

217 \noindent

218 #2

219 \UseHookWithArguments { contentsline / text / before } { 4 }
220 {#1} {#3} {#4} { \@contentsline@destination }

221 #3

222 \UseHookWithArguments { contentsline / text / after } { 4 }
223 {#1} {#3} {#4} { \@contentsline@destination }

224 \UseHookWithArguments { contentsline / page / before } { 4 }
225 {#1} {#3} {#4r

226 { \@contentsline@destination }

227 \UseHookWithArguments { contentsline / page / after } { 4 }
208 {#1} {#3} {#4r

229 { \@contentsline@destination }

230 \par

231 \group_end:

232 \vfil

233 }

234 }

(End of definition for \1@section and others. These functions are documented on page ?7.)

35 \setcounter { tocdepth } { 2 }

1.4 Block environments

description (env.) Stub logical environments: needed as the tagging setup expects these to exist.

(
quote (env.) .;; \NewDocumentEnvironment { description } { } { > { }
quotation (env.) . \NewDocumentEnvironment { quote } { } { } { }
verse (env.) 2 \NewDocumentEnvironment { quotation } { } { } { }
(30 \NewDocumentEnvironment { verse } { } { } { }
(
(

stdquote (enwv.

stdquotation

)
env.)
)

stdverse (enw.

o1

220 \AddToHook { begindocument / before }

241 {

242 \clist_map_inline:nn { quote , quotation , verse }
243 {

244 \NewEnvironmentCopy { std #1 } {#1}

245 \RenewDocumentEnvironment {#1} { D <> { a1l } '0 { } }
246 {

247 __talk_action_begin:n {##1}

248 \begin { std #1 } [{##2}]

249 \ignorespaces

250 }

251 {

252 \end { std #1 }

253 __talk_action_end:

254 }

255 }

256 }

block (env.)
»57 \NewDocumentEnvironment { block } { D <> { all } m }

258 {

250 __talk_action_begin:n {#1}
260 \par

261 \vbox_set:Nw \1__talk_tmp_box
262 \group_begin:

263 \medskip

264 \leavevmode

265 \normalfont \large \bfseries
266 \color { structure }

267 #2

268 \par

269 \medskip

270 \group_end:

o1}

272 {

273 \vbox_set_end:

274 \box_use:N \1__talk_tmp_box
275 \par

276 __talk_action_end:

277 }

1.5 Lists

\item Again, add the additional argument: here, we have to do a little gymnastics. The test
__talk_item_parse_spec:w for an overlay has to come after the standard item definition: in a list, items have to
__talk_item_parse_spec:n close the structure before them first, so if we test too early, we’d end up covering then

uncovering straight away!

278 \AddToHook { begindocument / before }

279 {

280 \NewCommandCopy \stditem \item

281 \RenewDocumentCommand \item { d <> o }
282 {

283 \IfNoValueTF {#2}

52

\1__talk_list_end_tl

__block_inter_item:
\endblockenv

284 { \stditem }

285 { \stditem [{#2}] }

286 \IfNoValueTF {#1}

287 {

288 \exp_after:wN __talk_item_parse_spec:w

289 \1__talk_action_spec_str < all > \qg_stop
290 }

201 { __talk_item_parse_spec:n {#1} }

292 }

293 }

Parsing the spec is a separate function here as there are a couple of routes to get here. At
present we only have a false branch, but for spacing we likely will need to add something
to the true branch too. The odd stuff with \currentgrouplevel here is needed so we
only close the item at the correct nesting, allowing for the group that gets added. We
also need to watch out for \pause: if that is active, the entire item should not show up.
That is easiest to check using the \g__talk_onslide_t1 variable.

204 \cs_new_protected:Npn __talk_item_parse_spec:w #1 < #2 > #3 \q_stop

205 { __talk_item_parse_spec:n {#2} }

206 \cs_new_protected:Npn __talk_item_parse_spec:n #1

297 {

208 \tl_if_empty:NT \g__talk_onslide_tl

299 {

300 \tl_if blank:nF {#1}

301 {

302 \tl_set:Ne \1__talk_list_end_tl

303 {

304 \exp_not:N \int_compare:nNnT \tex_currentgrouplevel:D =
305 { \int_use:N \tex_currentgrouplevel:D + 1 }
306 {

307 __talk_action_end:

308 \tl_clear:N \exp_not:N \1__talk_list_end_tl
309 }

310 }

311 __talk_action_begin:n {#1}

312 }

313 }

314 }

(End of definition for \item, __talk_item_parse_spec:w, and __talk_item_parse_spec:n. This func-
tion is documented on page 77.)

35 \tl_new:N \1__talk_list_end_tl

(End of definition for \1__talk_list_end_tl.)

There are no currently no hooks for insertion at the end of list items, so we have to do it
manually. We cannot target __block_list_item_end:/__block_list_end: as these
change definition if tagging is suspended.

316 \cs_gset_protected:Npn __block_inter_item:

317 {

318 \legacy_if:nT { @inlabel }

319 { \indent \par }

53

345

346

347

348

349

359

360

\mode_if_horizontal:T
{
__block_skip_remove_last:
__block_skip_remove_last:
\par
}
\1__talk_list_end_tl
__kernel_list_item_end:
__kernel_list_item_begin:
\addpenalty \@itempenalty
\addvspace \itemsep
¥

\cs_gset:Npn \endblockenv

{
__block_debug_typeout:n { blockenv~common~ending \on@line }
\bool_if:NT \1__block_level_incr_bool
{ \int_gdecr:N \g_block_nesting_depth_int }
\legacy_if:nT { @inlabel }
{
\mode_leave_vertical:
\legacy_if_gset_false:n { @inlabel }
}
__block_if_list:T
{ \legacy_if:nT { Onewlist } { \@noitemerr } }
\mode_if_horizontal:TF

{
__block_skip_remove_last:
__block_skip_remove_last:
\par

}

{ \@inmatherr { \end { \@currenvir } } }
\1__talk_list_end_tl
__kernel_displayblock_end:
__block_if_list:T { \legacy_if_gset_false:n { @newlist } }
\legacy_if:nF { @noparlist }
{
__block_skip_set_to_last:N \1_tmpa_skip
\dim_compare:nNnT \1_tmpa_skip > \c_zero_dim
{
\skip_vertical:n { - \1_tmpa_skip }
\skip_vertical:n { \1_tmpa_skip + \parskip - \@outerparskip }
}
\addpenalty \Q@endparpenalty
\addvspace \1__block_topsepadd_skip
}
\socket_use:n { block / endpe }
}

(End of definition for __block_inter_item: and \endblockenv. This function is documented on page

?7)

itemize (env.) Allow for the classical beamer syntax.

enumerate (env.) .; \AddToHook { begindocument / before }

description (env.) s

{

54

\1__talk_action_spec_str

\newtheorem
\stdnewtheorem

360 \clist_map_inline:nn { itemize , enumerate , description }

370 {

371 \RenewDocumentEnvironment {#1} { = { action-spec } !o }
372 {

373 \IfNoValueTF {##1}

374 { \UseInstance { blockenv } {#1} { } }

375 { \UseIlnstance { blockenv } {#1} {##1} }

376 }

377 { \endblockenv }

378 }

379 }
And add the structural color to item labels.
330 \AddToHook { begindocument / before }

381 {

382 \EditInstance { item } { basic }

383 { label-format = \color { structure } #1 }

384 \EditInstance { item } { description }

385 { label-format = \normalfont \bfseries \color { structure } #1 }
386 }

Add an overlay key to the block template. Placed here, it applies before the \item starts,
so we do not have to redefine the latter to do actions up-front. This also means it can
apply to whatever we want it to within a block.

;57 \keys_define:nn { template / block / display }

ses { action-spec .str_set:N = \1__talk_action_spec_str }

(End of definition for \1__talk_action_spec_str.)

1.6 Theorems, etc.

We need to extend the creation of theorems in two ways: add the overlay argument, and
add the counter to the list of those reset during overlay creation.

330 \NewCommandCopy \stdnewtheorem \newtheorem
300 \RenewDocumentCommand \newtheorem { m O {#1} m o }

391 {

392 \IfNoValueTF {#4}

393 { \stdnewtheorem {#1} [{#2}] {#3} }

304 { \stdnewtheorem {#1} [{#2} 1 {#3} [{#4} 1 }
395 \NewEnvironmentCopy { std #1 } {#1}

396 \RenewDocumentEnvironment {#1} { D <> { all } o }
397 {

308 __talk_action_begin:n {##1}

399 \IfNoValueTF {##2}

400 { \begin { std #1 } }

401 { \begin { std #1 } [{##2}] }

402 \ignorespaces

403 }

404 {

405 \end { std #1 }

406 __talk_action_end:

407 }

408 }

55

(End of definition for \newtheorem and \stdnewtheorem. These functions are documented on page 77.)

100 {/class)

56

\@author

\@date
\@institute
\@subtitle
\@title
\@shortauthor
\@shortdate
\@shortinstitute
\@shortsubtitle
\@shorttitle

\author
\date
\title

Part X
Itx-talk-title — Title pages

1 Itx-talk-title implementation

Start the DocStrip guards.
1 (*class)
Identify the internal prefix.
. (ee=talk)

We create a set of keys and variables in one go. Following the classical kernel approach,
all of the underlying storage is global. The short values will always be set in the following
code so can be used automatically anywhere we might want them.

5 \clist_map_inline:nn

s+ { author , date , institute , subtitle , title }

{
6 \keys_define:nn { talk / metadata }
7 {
3 #1 .tl_gset:c = Q@ #1 ,
9 short- #1 .tl_gset:c = @short #1
10 }
11 }

Allow empty values for author and title.

12 \tl_gclear:N \@author
13 \tl_gclear:N \@title

As the date has a standard value, that has to be propagated.
12 \tl_gset_eq:NN \@shortdate \@date

(End of definition for \@author and others. These variables are documented on page ?77.)

Slightly repetitive but as we need to handle the tagging aspects, this is easier than using
a loop. The main aim is to add the short metadata concept. Notice that keys are set
before the main data storage in case someone set the value as a key as well as a mandatory
argument.

s \RenewDocumentCommand \author { = { short-author } 0 { {#2} } m }

16 {

17 \keys_set:nn { talk / metadata } {#1}

18 \tl_gset:Nn \@author {#2}

19 \tl_gset_eq:NN \g__tag_title_author_tl \Qauthor

20 \keys_set_known:nn { hyp } {#1}

21 }

2> \RenewDocumentCommand \date { = { short-date } 0 { {#2} } m }
23 {

2 \keys_set:nn { talk / metadata } {#1}

25 \tl_gset:Nn \@date {#2}

s}

»7 \RenewDocumentCommand \title { = { short-title } 0 { {#2} } m }
28 {
29 \keys_set:nn { talk / metadata } {#1}

57

w

0 \tl_gset:Nn \@title {#2}

31 \tl_gset_eq:NN \g__tag_title_title_tl \@title
32 \keys_set_known:nn { hyp } {#1}

33 }

(End of definition for \author, \date, and \title. These functions are documented on page ?7.)

\institute Simple storage at present: unlike some of the kernel data, there is not a lot to do here.
\subtitle ., \NewDocumentCommand \institute { = { short-institute } 0 { {#2} } m }

35 {

36 \keys_set:nn { talk / metadata } {#1}

37 \tl_gset:Nn \Q@institute {#2}

38 ¥

30 \NewDocumentCommand \subtitle { = { short-subtitle } O { {#2} } m }
w o

41 \keys_set:nn { talk / metadata } {#1}

a2 \tl_gset:Nn \@subtitle {#2}

PER

(End of definition for \institute and \subtitle. These functions are documented on page 77.)

\1__talk_titlelem_after_skip As the various elements of the titlepage share certain characteristics, we use a single
\1 talk titlelen before skip template and split them as instances.
\1__talk_titlelem_color_tl ,, \NewTemplateType { titlepage-element } { 1 }
\1__talk_titlelem_font_tl .5 \DeclareTemplateInterface { titlepage-element } { talk } { 1 }
\l talk titlelem tag begin t1 a6 {

\1__talk_titlelem_tag_end_tl 4 after-skip : length = Oem ,
48 before-skip : length = Oem ,
49 color : tokenlist = . ,
50 font : tokenlist = \normalfont ,
51 tag-begin : tokenlist = ,
52 tag-end : tokenlist =
53 }
s« \DeclareTemplateCode { titlepage-element } { talk } { 1 }
55 {
56 after-skip = \1__talk_titlelem_after_skip ,
57 before-skip = \1__talk_titlelem_before_skip ,
58 color = \1__talk_titlelem_color_tl ,
59 font = \1__talk_titlelem_font_tl ,
60 tag-begin = \1__talk_titlelem_tag_begin_tl ,
61 tag-end = \1__talk_titlelem_tag_end_tl
e }
63 {
64 \tl_if_empty:nF {#1}
65 {
66 \vspace { \1__talk_titlelem_before_skip }
67 \group_begin:
68 \tl_if_empty:NF \1__talk_titlelem_color_tl
69 { \color_select:V \1__talk_titlelem_color_tl }
70 \1__talk_titlelem_font_tl
7 \1__talk_titlelem_tag_begin_tl
72 #1
73 \par
74 \1__talk_titlelem_tag_end_tl

58

75 \group_end:
76 \vspace { \1__talk_titlelem_after_skip }
77 }
78 }
Standard settings are taken from beamer with minor adjustments.

79 \DeclareInstance { titlepage-element } { author } { talk }

80 { before-skip = lem }

s1 \DeclareInstance { titlepage-element } { date } { talk }

&2 { after-skip = 0.5em }

53 \DeclarelInstance { titlepage-element } { institute } { talk }
s« { font = \scriptsize }

&5 \DeclareInstance { titlepage-element } { subtitle } { talk }
% { before-skip = 0.25em , color = structure }

s7 \DeclareInstance { titlepage-element } { title } { talk }

88 {

89 color = structure ,

9 font = \Large ,

01 tag-begin = \tag_struct_begin:n { tag = Title } ,
B tag-end = \tag_struct_end:

93 }

(End of definition for \1__talk_titlelem_after_skip and others.)

\l talk titlepage order clist Here, we deal with the overall style: notice that frame vertical alignment actually applies
\l talk titlepage alignment t1 elsewhere, which is why it doesn’t show up in the template code part. As a result, we
\l talk titlepage framestyle t1 have a slightly repetitive key interface.
\1__talk_frame_alignment_tl o, \NewTemplateType { titlepage } { 0 }
os \DeclareTemplateInterface { titlepage } { talk } { 0 }

96 {

97 element-order : commalist =

98 {

99 title s

100 subtitle |,

101 author s

102 institute ,

103 date

104 } N

105 framestyle : tokenlist = talk ,

106 horizontal-alignment : choice { left , center , right } = center ,
107 vertical-alignment : choice { bottom , center , stretch , top } = center
108 }

100 \DeclareTemplateCode { titlepage } { talk } { 0 }

110 {

111 element-order = \1__talk_titlepage_order_clist ,

112 framestyle = \1__talk_titlepage_framestyle_tl ,

113 horizontal-alignment =

114 {

115 left = \tl_set:Nn \1__talk_titlepage_alignment_tl { flushleft } ,
116 center = \tl_set:Nn \1__talk_titlepage_alignment_tl { center } ,
117 right = \tl_set:Nn \1__talk_titlepage_alignment_tl { flushright }
118 } N

119 vertical-alignment =

120 {

121 bottom = \tl_set:Nn \1__talk_frame_alignment_tl { bottom } ,

59

122 center = \tl_set:Nn \1__talk_frame_alignment_tl { center } ,
123 stretch = \tl_set:Nn \1__talk_frame_alignment_tl { stretch } ,

124 top = \tl_set:Nn \1__talk_frame_alignment_tl { top }

125 }

126 }

127 {

128 \tl_if_empty:NF \1__talk_titlepage_framestyle_tl

129 { \exp_args:NV \thispagestyle \1__talk_titlepage_framestyle_tl }
130 \begin { \1__talk_titlepage_alignment_tl }

131 \cs_set_protected:Npn \and { \quad }

132 \clist_map_inline:Nn \1__talk_titlepage_order_clist

133 {

134 \ExpandArgs { nnv } \UseInstance { titlepage-element }
135 {##1} { @ ##1 }

136 }

137 \end { \1__talk_titlepage_alignment_t1l }

138 }

(End of definition for \1__talk_titlepage_order_clist and others.)

\maketitle A very simple setup.
130 \NewDocumentCommand \maketitle { 0 {} }

140 {

141 \bool_if:NTF \1__talk_frame_bool

142 { \UseTemplate { titlepage } { talk } {#1} }
143 {

144 \begin { frame }

145 \UseTemplate { titlepage } { talk } {#1}
146 \end { frame }

147 }

148 }

(End of definition for \maketitle. This function is documented on page 77.)

149 (/class)

60

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
© commands:
\@_decode_overlay_+:nw 123
N\ 279
A
\abovecaptionskip 139, 141
\action, 102
actionenv (env.) 102
\addcontentsline 112
\addpenalty 329, 362
\AddToHook 54, 66, 143,
151, 240, 259, 278, 324, 367, 380, 394
\addtolength 48
\addvspace 330, 363
\alert 79
alertenv (env.) 89
\Nalt ... 141
\and 131
\arabic 391
\arraycolsepiii... 25
\arrayrulewidth 27
\AssignTaggingSocketPlug 141
\author 15
B
\begin ... 111,112, 130, 144, 248, 400, 401
\begingroup 144, 146, 341
\belowcaptionskip 140, 142
\bfseries 21, 39, 167, 265, 385
\bigskipamount 18
block (env.) 257
block commands:
\g_block_nesting_depth_int 336
block internal commands:
__block_debug_typeout:n 334
__block_if_ list:TF 342, 353
__block_inter_item: 316, 316
\1__block_level_incr_bool 335
__block_list_end: 58
__block_list_item_end: 53

__block_skip_remove_last:

............... 322, 323, 346, 347

__block_skip_set_to_last:N 356

\1__block_topsepadd_skip 363
bool commands:

\bool_do_while:Nn 27

\bool_gset_false:N . 30, 36, 40, 416

61

\bool_gset_true:N 205, 213, 219, 408

\bool_if:NTF 6,
20, 26, 32, 38, 43, 44, 46, 55, 85,
123, 127, 132, 141, 178, 250, 335, 422

\bool_lazy_and:nnTF 41, 216, 267
\bool_lazy_or:nnTF 5, 21
\bool _new:N 3,

3, 7, 8 13, 99, 101, 385, 386, 387
\bool_set_eq:NN 117, 121

\bool_set_false:N
...... 27, 28, 93, 112, 125, 428, 448
\bool_set_true:N 24, 29
44, 61, 143, 180, 200, 215, 401, 436, 456

\c_false_bool 15
\c_true_bool 14
box commands:
\box_dp:N 25
\box_ht:N 60, 225, 250
\box_move_down:nn 58
\box_new:N 4, 56
\box_use:N 274

\box_use_drop:N
24, 203, 230, 234, 236, 320

\box_wd:N 30
box internal commands:
__box_dim_eval:n 22, 25, 30, 33
__box_set_to_wd: 29, 34
C
\clearpagec.oouiiiii.. 92
clist commands:
\clist_const:Nn 50
\clist_if_in:NnTF 57, 179
\clist_map_break: 201, 220
\clist_map_inline:Nn ... 132, 182, 307

\clist_map_inline:nn
3,59, 79, 121, 242, 369

\clist_new:N 10, 14
\clist_pop:NNTF 303
\clist_set:Nn 45, 178

\color 4, 11,56, 167, 174, 184, 266, 383, 385
color commands:

\color_group_begin: 23, 35
\color_group_end: 23
\color_math:nn 9, 26
\color_math:nnn 10, 27
\color_select:n 7,16

21, 22, 35, 37, 48, 69, 204, 248, 301, 342

\color_select:nn

\colorletoiiiiiniin.. 64
column (€nV.) 69
columns (env.) 9
\columnwidth 16, 75, 111

cs commands:
\cs_generate_variant:Nn 7, 8, 9, 10,
45, 46, 48, 49, 50, 51, 52, 53, 54, 175

\cs_gset:Npn 78, 79, 80, 332
\cs_gset_eq:NN 56
\cs_gset_nopar:Npn 49, 57, 64
\cs_gset_protected:Npn
...... 18, 27, 37, 142, 142, 274, 316
\cs_if_exist:NTF 67, 75, 110, 220
\cs_if_exist_p:N 268
\cs_if_exist_use:NTF 134, 134

\cs_new:Npn 6, 7, 34, 35, 36, 37, 38, 39

40, 41, 42, 144, 209, 330, 390, 391, 396
\cs_new_eq:NN 5, 6, 141, 389
\cs_new_nopar:Npn 3, 373
\cs_new_protected:Npe 55, 70, 96
\cs_new_protected:Npn .. 9, 11, 16

17, 18, 18, 24, 30, 35, 36, 37, 41, 44,
50, 51, 52, 52, 53, 55, 56, 67, 72, 81,
83, 94, 100, 103, 106, 112, 113, 116,
123, 130, 130, 131, 131, 136, 141,
146, 148, 149, 154, 159, 166, 168,
168, 170, 170, 176, 176, 178, 186,
189, 190, 196, 201, 212, 239, 265,
294, 296, 307, 336, 339, 398, 404, 412
\cs_set:Npn 14, 15, 59
\cs_set_eq:NN
142, 355, 356, 370, 371, 381, 382
\cs_set_nopar:Npn 113,
348, 350, 354, 358, 360, 365, 375, 380
\cs_set_protected:Npn

......... 29, 98, 131, 143, 196, 208

\cs_to_str:N 297, 302

\csname 150, 153, 154

D

\date 15

\day ... 20

\DeclareColor 61, 67, 68, 69
\DeclarelInstance 43,

52, 79, 81, 83, 85, 87, 115, 211
212, 213, 214, 215, 216, 217, 258, 323
\DeclareInstanceCopy 261, 326
\DeclareTemplateCode
. 23,49, 54, 99, 109, 191, 229, 276
\DeclareTemplateInterface

16, 45, 47, 94, 95, 184, 219, 266

\definecolor 65
description (env.) 236, 367

62

8,17, 38 dim commands:

\dim_compare :nNnTF

\dim_compare_p:nNn 50, 270
\dim_const:Nn 95, 101
\dim_eval:in 40, 41, 42
\dim_max:nn 51, 249
\dim_set:Nn 15, 74
\dim_set_eq:NN 16, 75
\dim_to_decimal:n 88
\dim_use:N 116, 117
\c_zero_dim 357
\DocumentMetadata 6
\doublerulesep 28
E
\EditInstance 262, 327, 382, 384
\emph 282
\end 118, 119, 137, 146, 252, 350, 405
\endblockenv 316, 377
\endcsname 150, 153, 154
\endfloatenv 116, 129
\endgroup 152, 158, 354
enumerate (env.) 367
environments:
actionenv 102
alertenv 89
block 257
column 69
COlUMNS . . .ttt 9
description 236, 367
enumerate 367
figure, 121
invisibleenv 71
itemize 367
onlyenv 71
overlayarea 197
overprint 214
quotation 236
quote 236
stdquotation 236
stdquote 236
stdversee... 236
table 121
UNCOVETENV . .o vvvv e e e et 71
VELSE . v vt vttt 236
visibleenv 89
exp commands:
\exp_after:wN 198, 288
\exp_args:Ne 17, 46, 129, 188
\exp_args:Nne 438
\exp_args:No 32
\exp_args:NV 129
\exp_args_generate:n 47

\exp_not:N 57, 59, 60
61, 64, 65, 65, 68, 70, 73, 73, 76, 76,
78, 81, 85, 87, 89, 90, 91, 92, 93, 95,
98, 98, 99, 99, 101, 102, 103, 103,
104, 104, 106, 107, 108, 109, 111,
112, 112, 114, 115, 117, 118, 137
256, 268, 301, 302, 303, 304, 308, 324

\exp_not:n 258, 326, 327, 439

\exp_stop_f: 40, 41, 42
\expandafter 153
\ExpandArgs 61,

71, 81, 89, 134, 252, 297, 298, 305, 312

F

\fboxrule 32
\fbOXSEp 31
NFL o 18, 148
figure (env.) 121
\figurename 132
file commands:

\file_if_exist_input:nTF 88

\file_input:n 90
\footins 30
\footnotesize 185
\footskip 290, 291
fp commands:

\fp_evalin 93

\fp_to_dim:n 103
\frame 26, 26, 397
frame 422
frame* 422
\framesubtitle 10
\frametitle 5, 429, 439

G

\gdef ... 256
\geometry 3
group commands:

\group_begin: 11,

33, 35, 58, 60, 64, 67, 84, 104,

115, 162, 202, 206, 216, 246, 262, 341

\c_group_begin_token 32

\group_end: 40,
40, 54, 62, 63, 69, 75, 87, 108,
139, 164, 207, 209, 231, 256, 270, 345

\group_insert_after:N ... 34, 159, 161

H
hbox commands:
\hbox:n 56
\hbox_set_end: 23
\hbox_set_to_wd:Nnw 14
\headsep 224, 243, 244

\hfil 17, 22, 88, 274, 318, 352, 363, 368, 378

63

hook commands:

\hook_gput_code:nnn 46, 92, 262

\hook_new:n 124

\hook_use:n 122
\hspace 201, 208
\hSS 158
\hypersetup 146

I

\IfBooleanT 325
\ifcase 5
\IfFormatAtLeastF 7
\IfNoValueF 326, 327
\IfNoValueTF 15, 25

36, 47, 63, 185, 283, 286, 373, 392, 399

\ignorespaces 18, 19, 80, 150, 195, 249, 402
\immediate 154
\includegraphics 316
\indent 319
\insertsection 81
\insertsubsection 81
\insertsubsubsection 81
\institute 34
int commands:

\int_compare:nNnTF 114,

191, 198, 203, 204, 210, 212, 214, 304

\int_compare_p:nNn 217, 218

\int_eval:n 188

\int_gdecr:N 336

\int_gincr:N 29, 128, 186, 400

\int_gset:Nn 187, 407

\int_gset_eq:NN 129, 134, 139

\int_gzero:N 25, 74

\int_incr:N 218

\int_max:nn 173

\int_new:N . 4,5, 71, 128, 145, 208, 388

\int_to_Roman:n 211

\int_to_roman:n 212

\int_use:N .. 8, 14, 52, 56, 68, 305, 393

\c_max_int 192, 218
\invisible 59
invisibleenv (env.) 71
iow commands:

\iow_now:Nn 254
\item bb, 278
itemize (env.) 367
\itemsep 54, 62, 69, 330

J
\jobname 147, 154
K
kernel internal commands:
__kernel_displayblock_end: 352

__kernel_list_item_begin: 328

__kernel_list_item_end: 327
keys commands:

\1_keys_choice_tl 71

\keys_define:nn

3, 5, 6, 28, 58, 73, 149, 387
\keys_set:nn .. 7,13, 17, 24, 29, 36
41, 46, 72, 80, 162, 427, 435, 447, 455

\keys_set_known:nn 20, 32
\1_keys_value_tl 43, 159
L

\label, 332
\labelenumiouou.. 34
\labelenumii 35
\labelenumiii 36
\labelenumiv 37
\labelitemfont 38, 39, 40, 41, 42
\labelitemi 38
\labelitemii 39
\labelitemiii 40
\labelitemiv 41
\labelsep 29, 33, 46, 48
\labelwidth 47, 48
\Largec.ciiiiiiin. 21, 90
\large 265
\leavevmode 77, 264
\leftmargin 51, 59, 66
\leftmargini 43, 47, 51
\leftmarginii 44, 59
\leftmarginiii 45, 66
\leftskip 173, 183
legacy commands:

\legacy_if:nTF

149, 252, 318, 337, 343, 354
340, 353

\legacy_if_gset_false:n

M

\makeatletter 145
\maketitle 139
\mathcolor 5,11
\mboX 310
\medskip 263, 269
\mode 33,11
mode commands:

\mode_if_horizontal:TF 320, 344

\mode_if_math:TF 309

\mode_leave_vertical: . 34, 312, 339
\month 5
msg commands:

\msg_error:nnn 118, 163

\msg_fatal:nn 15

\g_msg_module_name_prop 5

\g_msg_module_type_prop 6

\msg_new:nnn 277
\msg_new:nnnn 9, 224
\msg_warning:nn 273
N

\NeedsDocumentMetadata 17

\NewCommandCopyc......
..... 4, 5, 6, 280, 297, 317, 389, 397
\newcounter 19, 72, 73, 74, 132

\NewDocumentCommand

5, 10, 11, 34, 39, 61, 61, 81,
87, 92, 102, 139, 141, 147, 160, 173, 183
\NewDocumentEnvironment

..... 9, 69, 71, 89, 110, 123, 197,
214, 236, 237, 238, 239, 257, 432, 452
\NewEnvironmentCopy 244, 395
\newlabel 345
\newlength 139, 140
\NewTaggingSocket 127
\NewTaggingSocketPlug 128
\NewTemplateType
15, 44, 46, 93, 94, 183, 218, 265
\newtheorem 389
\newwrite 153
\nobreakspace 137
\noindent 31, 157, 217, 240, 287
\normalfont 42, 50, 223, 265, 385
\normalsize 149
\number 20, 22
\numberline 117
(0)
\obeyedline 16, 59
Nonly .. ovii 40, 59, 94
onlyenv (Env.) 71
\onslide, 147
opacity commands:
\opacity_select:n 17,

27, 28, 33, 34, 51, 56, 155, 158, 170, 207

\openout 154
\or 5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16
overlayarea (env.) 197
overprint (env.) 214
P

\pagecolor 43
\pagestyle 384
\paperheight 57, 58
\paperwidth 58, 295, 343, 344
\par 28, 30, 12, 23, 25, 39, 71,

73, 83, 89, 145, 151, 192, 206, 230,

237, 260, 268, 275, 319, 324, 348, 418
\parindent 156
\parsep 53, 61, 62, 68, 69

\parskipc.iiii.. 360 S

\partopsep 71 scan commands:
\pauseiia.. 53, 183 \scan_stop: 43
prg commands: \scriptsize 84
\prg_generate_conditional_— \section 72, 81
variant:Non 10 seq commands:
\prg_new_protected_conditional:Npnn \seq_gput_right:Nn 146
......................... 3,3 \seq_gremove_all:Nn 75,76, 77
\prg_return_false: 8,9 \seq_map_indexed_inline:Nn 83
\prg_return_true: 7,8 \seq_map_inline:Nn 126, 133, 138
\ProcessedArgument 14, 15 \seq_new:N 118
\ProcessKeyOptions 87 \seq_set_from_clist:Nn 81, 119
prop commands: \l_tmpa_seq 81, 83
\prop_gput:Non 5,6 \setcounter 24, 235
property commands: \setlength 25, 26, 27, 28, 29, 31,
\property_new:nnnn 8, 392 32, 33, 43, 44, 45, 46, 47, 71, 141, 142
\property_record:mn 52, 68, 395 \setmathfont 136
\ tv ref:nn 14. 396 \setsansfont 135
property_ ,
\protect 117 \SetTemplateKeys 110
\ProvidesExplClass g \sfdefault ... 142
\PUE o 57 \S.klp """"""""""""""" 30
skip commands:
Q \skip_horizontal:n
o1 e 245, 292, 321, 338, 344
\quad 131 \skip_set:Nn 173, 183
quark commands: . .

. . . . \skip_vertical:n 96, 98,
\quark_}f_recurs%on_ta%l_stop:N 133 102, 104, 108, 110, 114, 116, 359, 360
\quark_if_recursion_tail_stop_- \1_tmpa_skip 356, 357, 359, 360

dO:NTl R IR 150, 161 socket commands:
\quark_if_recursion_tail_stop_- \socket_use:n 365
doimn 39 \Spaceii 19, 21
\g_recursion_stop 36, 126, 153 \stdcolor 4
\q_recursion_tail 36, 126, 153 \gtdemph 282
\g_stop 65, 73, 99, 99, \stdincludegraphics 316
104, 108, 183, 186, 199, 201, 289, 294 \stditem 280, 284, 285
quotation (env.) 236 \stdmathcolor 4
quote (env.) ... 230 \stdnewtheorem 389
stdquotation (env.) 236
R stdquote (env.) 236
\raggedright 78,129, 194 \gtdtextbf 282
\refstepcounter 99 \StdtextcoloT 4
\relax 154 \stdtextit &
\relsizec..c.iiiiiiii.. 93 \stdtexXtmd, 282
\RenewCommandCopy 20 \stdtextnormal 282
\RenewDocumentCommand . 11, 15, 21, 22, \Stdtextrm 282
27, 30, 43, 94, 281, 298, 318, 332, 390 \stdtextsSC 282
\RenewDocumentEnvironment \stdtextsf @
----------- 245, 371, 396, 424, 444 \stdtextsl 282
\RequirePackage 3, 91, \stdtexttt 282
112, 130, 133, 134, 139, 140, 145, 316 \stdtextup 282
\rmdefault 142 stdverse (env.) 236
\rule L. 58 \stepcounter 19

rule commands: str commands:

\rule:nnn 37, 343 \str_clear:N 20, 30, 31

\str_if_empty:NTF 88
\str_if_empty_p:N 42
\str_if_eq:nnTF 17, 59, 85, 108, 110
\str_if_eq p:nn 6, 7, 23
\str_new:N 9, 11, 12, 15, 100
\str_put_right:Nn 136, 172
\str_replace_all:Nnn 20, 22, 52
\str_set:Nn 18, 26, 67, 71, 113
\str_set_eq:NN 119
\string 345
\subsection 72, 81
\subsubsection 72, 81
\subtitle 34
sys commands:
\sys_if_engine_opentype:TF 131
T
\tabbingsep 29
\tabcolsepc.iiiiin.. 26
table (env.) 121
\tableename 132
\tableofcontents 160
tag commands:
\tag_get:n 407
\tag_mc_begin:n 173, 180, 414
\tag_mc_end: 171, 178, 420
\tag_resume:n 170, 419
\tag_struct_begin:n . 91, 132, 172, 406
\tag_struct_end: 92, 139, 179, 410
\tag_suspend:n 181, 415
tag internal commands:
\g__tag_title_author_tl 19
\g__tag_title_title_tl 31
\tagpdfparaOff 61
\tagpdfsetup 147
talk internal commands:
__talk_action_:N 17, 17
__talk_action_alert:N 18, 18

__talk_action_begin:n 11, 79, 102,
105, 111, 113, 125, 247, 259, 311, 398

__talk_action_end: 30, 26, 84, 102
107, 112, 130, 130, 253, 276, 307, 406

__talk_action_invisible:N 24, 24
__talk_action_only:N 36
__talk_action_only_begin:N 36
__talk_action_only_end:N 36, 41

\1__talk_action_spec_str 149, 289, 387

__talk_action_uncover:N 53, 53
__talk_action_visible:N 24, 30
\1__talk_aspect_ratio_str 58, 107

\1__talk_cnt_reset_seq
75, 76, 77, 118, 133, 138, 146
__talk_cnt_restore: . 86, 131, 136
__talk_cnt_save: 77,131, 131

66

__talk_column_align_bottom:n 50, 50
__talk_column_align_center:n 50, 52
__talk_column_align_top:n 50, 67
\1__talk_column_alignment_tl . 28, 86
\1__talk_columns_wd_tl 5,14, 15
__talk_decode_action:n 87, 96, 96
__talk_decode_action:w .. 96, 98, 103

\1__talk_decode_action_str .
12, 20, 113, 120, 125
\1__talk_decode_actions_bool ...
13, 27, 122, 126
\1__talk_decode_actions_clist ... 13
\1__talk_decode_actions_str .. 13,31
\1__talk_decode_arg_str
9, 26, 32, 119,
__talk_decode_check:n 129, 176.
__talk_decode_check:nw 176, 183
__talk_decode_check_range:nnn
176, 192, 193,
__talk_decode_check_single:nn
176, 189, 196
__talk_decode_mode:n 46,55, 55
__talk_decode_mode: 78, 81, 83
__talk_decode_mode:w 55, 64,70
__talk_decode_mode_aux:n 55
__talk_decode_overlay_.:nw
__talk_decode_overlay_aux:nNN
123, 144, 147, 148
__talk_decode_overlay_offset:nNn
........... 123, 152, 157, 167, 170
__talk_decode_overlay_offset:nNnN
123, 156, 159, 168
__talk_decode_overlays:nN .
123, 126, 131, 137, 174
__talk_decode_overlays:nn
89, 108, 115, 123, 123
\1__talk_decode_overlays_bool ..
3, 6, 24, 28, 44, 61, 118, 123
10

164
176
186

208

\1__talk_decode_overlays_clist

\1__talk_decode_overlays_str ...
.................. 10, 30, 42, 88

__talk_decode_parse:n . 5, 16, 16, 116

__talk_decode_parse:w . 16, 36, 37, 48

__talk_decode_parse_auxi:n

16, 17, 18

__talk_decode_parse_auxii:n ...

16, 32, 35

\1__talk_decode_pure_bool
............... 7,29, 43, 93, 112

\1__talk_decode_step_bool

8, 125, 127, 143

\1__talk_float_alignment_tl

92, 104, 105, 106, 112, 118

\1__talk_fontsize_dim 58, 88, 93

\1__talk_footelem_color_tl 183
\1__talk_footelem_font_tl 183
\1__talk_footelem_left_skip 183
\1__talk_footelem_right_skip ... 183
\1__talk_footer_bg_tl 265
\1__talk_footer_fg tl 265
\1__talk_footer_font_tl 265
\1__talk_footer_left_skip 265
\1__talk_footer_order_clist 265
\1__talk_footer_right_skip 265
\1__talk_footer_sep_tl 265

\1__talk_frame_alignment_tl
89, 94, 148, 158
\1__talk_frame_bool 141, 385, 401
\g__talk_frame_int
14, 52, 68, 211, 388, 393, 400
41, 412, 412

__talk_frame_notag:n ...
__talk_frame_overprint:
209, 209, 221, 224, 228,
241, 243, 244, 247, 249, 256, 258, 263
__talk_frame_process:nn
398, 398, 429, 438, 449, 457

\g__talk_frame_struct_int 56, 71, 407
\g__talk_frame_subtitle_tl 3, 13, 76
__talk_frame_tag:n 37, 404, 404

\g__talk_frame_tag_bool
................ 46, 386, 408, 416

\1__talk_frame_tagging_str .

17, 18, 20, 22, 34, 149

__talk_frame_title:n 15,38, 44

\1__talk_frame_title_bool b8, 422

__talk_frame_title_tagged:n ...

15, 47, 51

\g__talk_frame_title_tl
............. 3, 8, 58, 75, 254, 437
\1__talk_frame_verb_bool
44, 387, 428, 436, 448, 456
\1__talk_frametitle_after_skip

........................ 25, 41
\1__talk_frametitle_before_skip

........................ 26, 32
\1__talk_frametitle_color_tl ...

..................... 27, 34, 35
\1__talk_frametitle_font_tl .. 28, 36
\1__talk_header_bg_tl 218
\1__talk_header_fg_ tl 218
\1__talk_header_font_t1 218
\1__talk_header_frametitle_bool 218
\1__talk_header_ht_dim 218
\1__talk_header_left_skip 218
\1__talk_header_right_skip 218

__talk_header_tag_begin:n
53, 168, 168, 175
__talk_header_tag_end: . 64, 168, 176

67

__talk_if_overlay:n
__talk_if_overlay:nTF
...... 3, 7,12, 13, 13, 23, 31, 32,

34, 45, 96, 143, 152, 175, 301, 320, 335
__talk_item_parse_spec:n
278, 291, 295, 296
__talk_item_parse_spec:w

278, 288, 294
332, 336, 339
. 26, 397, 397

__talk_label:n
__talk_latexe_frame:n
\1__talk_list_end_tl
302, 308, 315, 326, 351
__talk_metadata_name:n
306, 309, 314, 330, 330

__talk_mode:n 3
__talk_mode:nTF 3,12
\1__talk_mode_str 7, 58, 60, 85
\c__talk_modes_clist 50, 57

__talk_onslide:n 147, 148, 149, 188
\g__talk_onslide_escape_tl .

156, 159, 161, 165, 171
__talk_onslide_reset:
147, 153, 166, 170

\g__talk_onslide_tl
53, 79, 83, 151, 162, 164, 171, 298
__talk_overlay_arg:n
3, 11, 62, 72, 82, 90
__talk_overprint_begin:n
190, 190, 198, 215
__talk_overprint_check_ht:n ...
............... 214, 263, 265, 274
\1__talk_overprint_int . 208, 212, 218
__talk_overprint_save_ht: .
214, 219, 239
43, 48, 49, 52

__talk_pagecolor:n
\c__talk_paper_height_dim
\c__talk_paper_width_dim
\g__talk_pauses_int
9,4, 74, 128, 173, 186, 187,
\1__talk_saved_action_str 99, 119
\1__talk_saved_actions_bool
99, 121,
\1__talk_saved_overlays_bool ...
99, 117,
127, 129,

__talk_sect_tag:nn
\g__talk_section_tl
\1__talk_section_tl
__talk_slide:nn
__talk_slide_align_bottom:n . 94, 94
__talk_slide_align_center:n 94, 100
__talk_slide_align_stretch:n 94, 106

__talk_slide_align_top:n 94, 112
__talk_slide_aux:n 9, 45, 56
__talk_slide_begin: 33,72, 72

\1__talk_slide_box
\g__talk_slide_continue_bool .. 3,
27, 30, 36, 40, 85, 178, 205, 213, 219
__talk_slide_end: 49, 72, 81
\g__talk_slide_int

. 5, 8, 25,29, 198, 204, 210, 212, 217

\g__talk_subsection_tl 66
\1__talk_subsection_tl 66, 109
\g__talk_subsubsection_tl 66
\1__talk_subsubsection_tl 66, 111
__talk_textcmd_eqiv:n . 282, 303, 307
\1__talk_titlelem_after_skip 44
\1__talk_titlelem_before_skip ... 44
\1__talk_titlelem_color_tl 44
\1__talk_titlelem_font_tl 44
\1__talk_titlelem_tag_begin_tl 44
\1__talk_titlelem_tag_end_tl 44
\1__talk_titlepage_alignment_tl 94
\1__talk_titlepage_framestyle_tl 94
\1__talk_titlepage_order_clist .. 94

__talk_tmp:w 55, 55, 98, 107
\1__talk_tmp_box 14,
24, 39, 56, 60, 73, 87, 193, 203, 225,
930, 234, 236, 250, 261, 274, 293, 320
\1__talk_tmp_tl

12, 18, 21, 23, 57, 101, 303, 305, 306
__talk_toc_aux:nnnn
........... 166, 167, 170, 180, 189
__talk_toc_dest:n 166, 193, 196
__talk_toc_dest:w 166, 198, 201
__talk_toc_level:nnnn . 166, 194, 212
\1__talk_uncover_hidden_fp 46
__talk_wallpaper_hrule:Nmn
............... 241, 288, 336, 336
talk/sec/title 127
\temporal 173

TEX and KWTEX 2¢ commands:

\@arabic 6, 7, 78, 79, 80, 144, 390
\Qauthor 3,18, 19
\Qauxout 254, 343
\@bsphack 334
\@caption 32, 143
\@captype 113

\@contentsline@destination .
51, 198, 220, 223, 226, 229

\@currentHref 350
\@currentlabel 347
\@currentlabelname 349
\@currenvir 350
\@date 3, 25
\@definecounter 141
\@endparpenalty 362
\@esphack 337
\@evenfoot 356, 371, 382

68

\@evenhead 355, 370, 381
\@framenumber 388
\@ignore 30
\@ignoretrue 90
\@inmatherr 350
\@input 147
\@institute 3, 37
\@itempenalty 329
\@kernel@reserved@label@data ... 351
\@listI 56
\@listi ... 49, 56
\@listii 57
\@listiii 64
\@makecaption 150
\@makefnmark 158
\@makefntext 32, 154
\@mpfootins 30
\@nobreakfalse 157
\@noitemerr 343
\@oddfoot 354, 356, 365, 371, 380, 382
\@oddhead 350, 355, 360, 370, 375, 381
\@outerparskip 360
\@parboxrestore 76, 147
\@setminipage 148
\@shortauthor 3
\@shortdate 3
\@shortinstitute 3
\@shortsubtitle 3
\@shorttitle 3
\@starttoc 142, 163
\@subtitle 3, 42
\Otitle ... 3, 30, 31
\@totalframes 392
\c@figure 132
\c@frame 388
\c@page 144
\c@pauses 4
\c@section 78
\c@slideo.u..... 5
\c@subsection 79
\c@subsubsection 80
\c@table 132
\check@mathfonts 143
\currentgrouplevel 53
\fnum@figure 132
\fnum@table 132
\Gm@bmargin 291
\Gm@lmargin 225, 272, 338
\Gm@rmargin 227, 273, 321
\Gm@tmargin 224
\hb@xt@ 158
\if@minipage 148
\ignorespaces 30
\l@section 166

\l@subsection 166
\l@subsubsection 166
\on@line 334
\protected@write 343
\ps@plain 348
\ps@talk 348
\ps@wallpaper 348
\std@definecounter 141
tex commands:
\tex_currentgrouplevel:D 304, 305
\tex_fontdimen:D 61
\tex_hsize:D 22, 33
\tex_setbox:D 20, 31
\tex_textfont:D 61
\tex_vbox:D 20, 31
\tex_vrule:D 39
text commands:
\text_purify:n 53, 58, 129
\text_titlecase_first:n 134
\textasteriskcentered 40
\textbf 282
\textbullet 38
\textcolor 6, 11
\textendash 39
\textheight 87
\textit 282
\textmd 282
\textnormal 282
\textperiodcentered 41
\textrm 282
\textsc 282
\textsf, 282
\textsl 282
\texttt 282
\textup 282
\textwidth 28, 8, 15, 16, 74, 75, 214
\theenumi 34
\theenumii 35
\theenumiii 36
\theenumiv 37
\thefigure 132
\theframe 388
\thepage 5, 144, 348
\thepauses 4
\thesection 72
\theslide 5
\thesubsection 72
\thesubsubsection 72
\thetable 132
\thispagestyle 129
\tiny 271
\title . ..ovi 15
tl commands:
\tl_clear:N 109, 111, 308

69

\tl_gclear:N 12, 13, 75, 76, 79, 164, 165

\tl_gset:Nn 8, 13, 18

25, 30, 37, 42, 156, 162, 244, 247, 437
\tl_gset_eq:NN 14, 19, 31
\tl_if_blank:nTF

...... 37, 76, 92, 107, 114, 191, 300
\tl_if_blank _ p:n 22
\tl_if_empty:NTF 34,

68, 128, 203, 247, 298, 300, 309, 339
\tl_if_empty:nTF 64, 188, 199
\tl_if_exist:NTF 241, 332
\tl_map_inline:nn 282

\tl_new:N 3,4, 57, 66, 67, 68, 69, 70
71,92, 133, 135, 148, 171, 172, 243, 315
\tl_retokenize:n 63
\tl_set:Nn
12, 104, 105, 106, 106, 115, 116
117, 121, 122, 123, 124, 134, 136, 302

\tl_set_eq:NN 42, 158
\tl_to_str:n

. 52,53, 64, 79, 99, 99, 104, 108, 439
\tl_trim_spaces:n 47
\tl_use:N 83, 89, 151

\today 3

token commands:

\token_if_eq_meaning:NNTF 155, 166

\token_to_str:N 71, 72
\topsep 52, 60, 67
U
\URCOVET . ..t i it 59
uncoverenv (env.) 71
\unskip i 21

use commands:
\use:N . 86, 89, 96, 99, 103, 125, 135
\Use:n 46,
48, 60, 68, 85, 96, 101, 110, 192, 322
\use_none:n 136
\UseHookWithArguments
........... 219, 222, 224, 227, 342
\UselInstance 57, 126, 128, 134, 253
305, 313, 362, 367, 374, 375, 377, 380
\UseStructureName 102, 135
\UseTaggingSocket 96, 97, 107, 146, 148
\UseTemplate 142, 145
\%
\value 115, 191, 203, 214
vbox commands:
\vbox:n 51, 54, 63
\vbox_set:Nw 39, 78, 261
\vbox_set_end: 44, 84, 85, 200, 217, 273
\vbox_set_to_wd:Nnn 18, 293
\vbox_set_to_wd:Nnw 27, 73, 193

\vbox_to_ht:nn 54, 87, 201, 227

\vbox_top:n 68

\vbox_unpack_drop:N 87, 90
veoffin commands:

\vcoffin_set:Nnn 1
verse (ENV.) 236

\VELl . 204, 231, 232

\visible 79

visibleenv (env.) 89

\vspace 32, 41, 66, 76
Y

\year 22

70

	Contents
	I ltx-talk – Overall set up
	1 ltx-talk implementation
	1.1 Set up
	1.2 Additions for expl3
	1.3 Extra variants
	1.4 Scratch space
	1.5 Option handling
	1.6 Setting up
	1.7 Math support
	1.8 Font selection
	1.9 Hyperlinks
	1.10 Tagging

	II ltx-talk-color – Color definitions
	1 ltx-talk-color implementation
	1.1 Existing definitions
	1.2 Document commands
	1.3 Color definition
	1.4 Semantic colors

	III ltx-talk-decode – Decoding overlay specs
	1 ltx-talk-decode implementation

	IV ltx-talk-frame – The structure of frames
	1 ltx-talk-frame implementation
	1.1 Slides in frames
	1.2 Counters
	1.3 Frame options
	1.4 Tagging for headers
	1.5 Wallpaper
	1.6 The frame environment

	V ltx-talk-frame – The structure of frames
	1 ltx-talk-frame-structure implementation
	1.1 Columns
	1.2 Floats
	1.3 Footnotes

	VI ltx-talk-mode – Modes
	1 ltx-talk-mode implementation

	VII ltx-talk-overlay – Overlays
	1 ltx-talk-overlay implementation
	1.1 Utilities
	1.2 Action commands and environments
	1.3 Non-action commands and environments
	1.4 Fixed-size areas
	1.5 Adding overlays to existing commands

	VIII ltx-talk-required – "Required" definitions
	1 ltx-talk-required implementation
	1.1 Standard design settings
	1.2 List support

	IX ltx-talk-structure – Structural commands
	1 ltx-talk-structure implementation
	1.1 Frame title
	1.2 Sectioning
	1.3 Table of contents
	1.4 Block environments
	1.5 Lists
	1.6 Theorems, etc.

	X ltx-talk-title – Title pages
	1 ltx-talk-title implementation

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	Y

